College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 81GP
** Six Flags roller coaster A loop-the-loop on the Six Flags Shockwave roller coaster has a 10-m radius (Figure P7.81) The car is moving at 24 m/s at the bottom of the loop. Determine the force exerted by the seat of the car on an 80-kg rider when passing inverted at the top of the loop.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The small 0.6 kg block slides on the circular path of radius 3 m. in the vertical plane. The speed of the block is 5 m/s as it passes point A and 4 m/s as it passes point B.
a. Determine the normal force exerted on the block by the surface at point A.
b. Determine the normal force exerted on the block by the surface at point B.
c. Determine the total acceleration of the block at B.
2. A 175-kg roller coaster car is supposed to make a vertical loop with a diameter of 13.5 m, with the
car on the inside of the loop.
a.
What is the minimum speed of the car at the top of the loop so that it doesn't come off of
the tracks and fall to the ground?
b. If the car is traveling at twice that speed, what is the magnitude of the normal force exerted
on the car by the tracks?
2. A 5.00-kg rock piece is released from rest at
the top of a 2.50-m-long ramp, reaching a speed
of 1.75 m/s at the bottom. The ramp is inclined at
an angle of 30°. Calculate the coefficient of
kinetic friction between the rock and the ramp.
*Do not forget to draw the FBD*
Kinematic
VxVox + axt
1
x=x0+ x² + x²
voxt
v² = x + 2a, (x-xo)
1
x-xo=(vox + v)t
Equations
Vy = voy + ant
1
y
= 3 + Payt + ayt²
=
v=vy + 2a, (y - Yo)
10 = 1/2 (voy + v₂ ) t
y - yo =
139
(Heat
Newton's Laws of Motion
ΣF = 0
(Newton's 1st Law)
2 F = ma
(Newton's 2nd Law)
fsmax = Msn fk = Men
2.50 m
30°
g = 9.8 m/s²
weight = mass x g
Chapter 7 Solutions
College Physics
Ch. 7 - Review Question 7.1 Assuming that Earths orbit...Ch. 7 - Review Question 7.2 A system can possess energy...Ch. 7 - Review Question 7.3 When we use the work-energy...Ch. 7 - Review Question 7.4 If the magnitude of the force...Ch. 7 - Review Question 7.5 Why, when friction cannot be...Ch. 7 - Review Question 7.6 What would change in the...Ch. 7 - Review Question 7.7 Imagine that a collision...Ch. 7 - Review Question 7.8 Toyota says that the power of...Ch. 7 - Review Question 7.9 In this section you read that...Ch. 7 - In which of the following is positive work done by...
Ch. 7 - 2. Which answer best represents the system’s...Ch. 7 - An Atwood machine is shown in Figure Q7.3. As the...Ch. 7 - Prob. 4MCQCh. 7 - 5. Three processes are described below. Choose one...Ch. 7 - 6. Choose which statement describes a process in...Ch. 7 - 7. Which example(s) below involve(s) zero physics...Ch. 7 - 8. Estimate the change in gravitational potential...Ch. 7 - What does it mean if object 1 does +10 J of work...Ch. 7 - You pull on a spring, which obeys Hookes law, in...Ch. 7 - The graph in Figure Q7.11 shows the time...Ch. 7 - 12. A 1400-kg car is traveling on a level road at...Ch. 7 - Prob. 13MCQCh. 7 - Two clay balls are moving toward each other. The...Ch. 7 - 15. Is energy a physical phenomenon, a model, or a...Ch. 7 - 16. Your friend thinks that the escape speed...Ch. 7 - Suggest how you can measure the following...Ch. 7 - How can satellites stay in orbit without any jet...Ch. 7 - Why does the Moon have no atmosphere, but Earth...Ch. 7 - What will happen to Earth if our Sun becomes a...Ch. 7 - 21. In the equation , the gravitational potential...Ch. 7 - 22. You push a small cart by exerting a constant...Ch. 7 - 1. Jay fills a wagon with sand (about 20 kg) and...Ch. 7 - 2. You have a 15-kg suitcase and (a) slowly lift...Ch. 7 - * You use a rope to slowly pull a sled and its...Ch. 7 - A rope attached to a truck pulls a 180-kg...Ch. 7 - 5. You lift a 25-kg child 0.80 m, slowly carry him...Ch. 7 - A truck runs into a pile of sand, moving 0.80 m as...Ch. 7 - 7. A 0.50-kg block is placed in a straight gutter...Ch. 7 - s up a smooth incline, which makes an angle with...Ch. 7 - 9. ** It is a windy day. You are moving a 20-kg...Ch. 7 - A 5.0-kg rabbit and a 12-kg Irish setter have the...Ch. 7 - Prob. 11PCh. 7 - * A pickup truck (2268 kg) and a compact car (1100...Ch. 7 - * When does the kinetic energy of a car change...Ch. 7 - * When exiting the highway, a 1100-kg car is...Ch. 7 - Prob. 15PCh. 7 - 16. * Flea jump flea pushes off a surface by...Ch. 7 - * Roller coaster ride A roller coaster car drops a...Ch. 7 - 18. * BIO EST Heart pumps blood The heart does...Ch. 7 - 19. * Wind energy Air circulates across Earth in...Ch. 7 - 20. * BIO Bone break The tibia bone in the lower...Ch. 7 - 21. * BIO EST Climbing Mt. Everest In 1953 Sir...Ch. 7 - 22. A door spring is difficult to stretch. (a)...Ch. 7 - * A moving car has 40,000 J of kinetic energy...Ch. 7 - 24. * The force required to stretch a slingshot by...Ch. 7 - Jim is driving a 2268-kg pickup truck at 20 m/s...Ch. 7 - 26. * A car skids 18 m on a level road while...Ch. 7 - s mass is m. An average friction force of...Ch. 7 - Prob. 28PCh. 7 - Prob. 29PCh. 7 - 30. In a popular new hockey game, the players use...Ch. 7 - 31. The top of a descending ski slope is 50 m...Ch. 7 - * If 20% of the gravitational potential energy...Ch. 7 - Prob. 33PCh. 7 - 34. A driver loses control of a car, drives off an...Ch. 7 - * You are pulling a box so it moves at increasing...Ch. 7 - s speed increases from zero to 4.0 m/s in a...Ch. 7 - 37. ** EST Hit by a hailstone A 0.030-kg hailstone...Ch. 7 - 38. * BIO Froghopper jump Froghoppers may be the...Ch. 7 - 39. * Bar chart Jeopardy 1 Describe in words and...Ch. 7 - * Bar chart Jeopardy 2 Describe in words and with...Ch. 7 - 41. * Equation Jeopardy 1 Construct a qualitative...Ch. 7 - * Equation Jeopardy 2 Construct a qualitative...Ch. 7 - Prob. 43PCh. 7 - 44. * Evaluation 2 Your friend provides a solution...Ch. 7 - 45. A crab climbs up a vertical rock with a...Ch. 7 - 46 * Work-energy bar charts for a person going...Ch. 7 - Prob. 47PCh. 7 - * A 1060-kg car moving west at 16 m/s collides...Ch. 7 - * You fire an 80-g arrow so that it is moving at...Ch. 7 - 50. * You fire a 50-g arrow that moves at an...Ch. 7 - * To confirm the results of Problem 7.50, you try...Ch. 7 - 52. * Somebody tells you that Figure P7.52 shows...Ch. 7 - 54. A roofing shingle elevator is lifting a...Ch. 7 - 55. (a) What is the power involved in lifting a...Ch. 7 - * A fire engine must lift 30 kg of water a...Ch. 7 - * BIO Internal energy change while biking You set...Ch. 7 - * Climbing Mt. Mitchell An 82-kg hiker climbs to...Ch. 7 - * BIO EST Sears stair climb The fastest time for...Ch. 7 - * BIO EST Exercising so you can eat ice cream You...Ch. 7 - 61. ** BIO Salmon move upstream In the past,...Ch. 7 - * EST Estimate the maximum horsepower of the...Ch. 7 - Prob. 63PCh. 7 - At what distance from Earth is the gravitational...Ch. 7 -
65. * Possible escape of different air molecule...Ch. 7 - Determine the escape speed for a rocket to leave...Ch. 7 - Determine the escape speed for an object to leave...Ch. 7 - If the Sun were to become a black hole, how much...Ch. 7 - * A satellite moves in elliptical orbit around...Ch. 7 - 70. * Determine the maximum radius Earth's Moon...Ch. 7 - 71. You throw a clay ball vertically upward. The...Ch. 7 - Prob. 72GPCh. 7 - Prob. 73GPCh. 7 - 74 * EST A “gravity force car” is powered by the...Ch. 7 - * Loop the loop You are given a loop raceway for...Ch. 7 - 76. ** Atwood machine Two blocks of masses hang...Ch. 7 - andm2 are connected with a string that passes over...Ch. 7 - of all species became extinct, ending the reign of...Ch. 7 - s cradle is a toy that consists of several metal...Ch. 7 - 81. ** Six Flags roller coaster A loop-the-loop on...Ch. 7 - ** Designing a ride You are asked to help design a...Ch. 7 - BIO Metabolic rate Energy for our activities is...Ch. 7 - BIO Metabolic rate Energy for our activities is...Ch. 7 - BIO Metabolic rate Energy for our activities is...Ch. 7 - BIO Metabolic rate Energy for our activities is...Ch. 7 - BIO Metabolic rate Energy for our activities is...Ch. 7 -
BIO Kangaroo hopping Hopping is an efficient...Ch. 7 - BIO Kangaroo hopping Hopping is an efficient...Ch. 7 - BIO Kangaroo hopping Hopping is an efficient...Ch. 7 - BIO Kangaroo hopping Hopping is an efficient...Ch. 7 - BIO Kangaroo hopping Hopping is an efficient...Ch. 7 - BIO Kangaroo hopping Hopping is an efficient...
Additional Science Textbook Solutions
Find more solutions based on key concepts
As an automotive engineer, youre charged with improving the fuel economy of your companys vehicles. You realize...
Essential University Physics: Volume 1 (3rd Edition)
A thin rod carries charge Q distributed uniformly over its length L and is situated on the x-axis between x = L...
Essential University Physics (3rd Edition)
31.22 (a) Use the results of part (a) of Exercise 31.21 to show that the average power delivered by the source ...
University Physics with Modern Physics (14th Edition)
60. How does the kinetic energy of the particle in Figure P24.59 change as it traverses the velocity .selector?...
College Physics: A Strategic Approach (4th Edition)
Is breathing a voluntary or involuntary action?
Conceptual Integrated Science
Choose the best answer to each of the following. Explain your reasoning. strong evidence for the existence of d...
The Cosmic Perspective Fundamentals (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A ball of mass m = 0.275 kg swings in a vertical circular path on a string L = 0.850 in long as in Figure P6.31. (a) What are the forces acting on the ball at any point on the path? (b) Draw force diagrams for the ball when it is at the bottom of the circle and when it is at the top. (c) If its speed is 5.20 m/s at the top of the circle, what is the tension in the string there? (d) If the string breaks when its tension exceeds 22.5 N, what is the maximum speed the ball can have at the bottom before that happens? Figure P6.31arrow_forwardReview. The gravitational force exerted on a baseball is 2.21 N down. A pitcher throws the ball horizontally with velocity 18.0 m/s by uniformly accelerating it along a straight horizontal line for a time interval of 170 ms. The ball starts from rest, (a) Through what distance does it move before its release? (b) What are the magnitude and direction of the force the pitcher exerts on the hall?arrow_forwardA roller coaster at the Six Flags Great America amusement park in Gurnee, Illinois, incorporates some clever design technology and some basic physics. Each vertical loop, instead of being circular, is shaped like a teardrop (Fig. P5.22). The cars ride on the inside of the loop at the top, and the speeds are fast enough to ensure the cars remain on the track. The biggest loop is 40.0 in high. Suppose the speed at the top of the loop is 13.0 m/s and the corresponding centripetal acceleration of the riders is 2g. (a) What is the radius of the arc of the teardrop at the top? (b) If the total mass of a car plus the riders is M, what force does the rail exert on the car at the top? (c) Suppose the roller coaster had a circular loop of radius 20.0 m. If the care have the same speed, 13.0 m/s at the top, what is the centripetal acceleration of the riders at the top? (d) Comment on the normal force at the top in the situation described in part (c) and on the advantages of having teardrop-shaped loops.arrow_forward
- Q5arrow_forwardA 1000-N car is proceeding on a roller coaster ride. The car enters a vertical loop of radius-30-meters. The speed of the car as it enters the loop is 50 m/s. The car slows owing to gravity and the speed at the top of the loop is 36 m/s. a) Determine the normal force acting on the car at the bottom of the loop. b) Determine the normal force acting on the car at the top of the loop. c) What speed must the car be traveling at the top of the loop for the passenger to appear weightless.arrow_forwardA 25 g ball slides down a smooth inclined plane 0.850 m high that makes an angle of 35 degrees with the horizontal. The ball slides down into an open box of 150 g mass. The ball and the box slide off the end of a table. 1.0 m high. a) How far from the base of the table will the box and ball hit the ground? b) What is their final velocity? 0.850 m 1.0,marrow_forward
- 2) Modern roller coasters have vertical loops like the one shown in the figure. The radius of curvature is smaller at the top than on the sides so that the normal force will not get too small, keeping the passengers pressed firmly into their seats. What is the speed of the roller coaster at the top of the loop if the radius of curvature there is 15.0 m and the normal force on a passenger is equal to 3/4 of their weight? B minimum C maximum Aarrow_forwardQ2 (LQ) A point mass, m, is initially rest at the top a fixed hemisphere with radius R. It then slides along the surface of the hemisphere under gravity. Ignore the friction between the mass and the surface. When it is at 0, it loses contact with the surface. Working in polar coordinates to find the angle o in terms of g and R. Φ Rarrow_forwardQ6arrow_forward
- A hockey puck slides with constant velocity, from point “a” to point “b” along a frictionless horizontal surface. When the puck reaches point “b”, it receives a instantaneous horizontal “kick “ in the direction as depicted by the heavy arrow. a) Along the frictionless path you have chosen, how does the speed of the puck vary after receiving the “kick”? *a. No change. b. Continuously increasing. c. Increasing for a while, and decreasing thereafter. d. Constant from a while and decreasing thereafter.arrow_forward*87. CD The alarm at a fire station rings and an 86-kg fireman, starting from rest, slides down a pole to the floor below (a distance of 4.0 m). Just before landing, his speed is 1.4 m/s. What is the magnitude of the kinetic frictional force exerted on the fireman as he slides down the pole?arrow_forwardIn the figure, a car is driven at constant speed over a circular hill and then into a circular valley with the same radius. At the top of the hill, the normal force on the driver from the car seat is O. The driver's mass is 66.0 kg. What is the magnitude of the normal force on the driver from the seat when the car passes through the bottom of the valley? Number i Units Radius Radiusarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY