Concept explainers
Interpretation:
The speed of lightfor a wavelength of
Concept introduction:
Light is measured by its wavelength (in nanometres) or frequency (in Hertz).
One wavelength equals the distance between two successive wave crests or troughs.
Frequency (Hertz) equals the number of waves that passes a given point per second.
The relation between the
Here,
The frequency of the electromagnetic radiation is used to determine the amount of energy, which is carried by one of its photons.
The energy of the photon is directly proportional to the frequency.
Here,
The relation between a nanometer and a meter is as:
The conversion factor to obtain the units of wavelength in
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
EBK CHEMISTRY
- Arrange the kinds of light listed below in order of increasing wavelength: Red visible light, blue visible light, infrared light, and X-rays X-ray blue visible red visible infrared infrared red visible blue visible X-ray blue visible red visible X-ray infraredarrow_forwardhe “Chemistry in Focus" segment Light as a Sex Attractant discusses fluorescence. In fluorescence, ultraviolet radiation is absorbed and intense white visible light is emitted. Is ultraviolet radiation a higher or a lower energy radiation than visible light?arrow_forwardRGB color television and computer displays use cathode ray tubes that produce colors by mixing red, green, and blue light. If we look at the screen with a magnifying glass, we can see individual dots turn on and off as the colors change. Using a spectrum of visible light, determine the approximate wavelength of each of these colors. What is the frequency and energy of a photon of each of these colors?arrow_forward
- Four types of electromagnetic radiation (EMR) are ultraviolet, microwaves, gamma rays, and visible. All of these types of EMR can be characterized by wavelength, frequency, photon energy, and speed of travel. Define these terms and rank the four types of electromagnetic radiation in order of increasing wavelength, frequency, photon energy, and speed.arrow_forwardOne type of solar radiation in the upper atmosphere has a frequency of 7.898 1014 Hz; another type has a frequency of 1.20 1015 Hz. (a) In what region of the electromagnetic spectrum does this solar radiation occur? (b) Which of the two types of radiation has the shorter wavelength? Explain your answer.arrow_forwardWhat wavelength of electromagnetic radiation corresponds to a frequency of 7.76 109 s1 ? Note that Plancks constant is 6.63 1034 J s, and the speed of light is 3.00 108 m/s.arrow_forward
- The lasers used in supermarket scanners emit red light at a wavelength of 633 nm. Compact disc players use lasers that emit light (that is not visible) at 840 nm. Which photonsthose emitted by supermarket scanners or compact disc (CD) playerscontain more energy per photon? Supermarket scanners CD players They both contain the same amount of energy per photon.arrow_forwardA baseball weighs 142 g. A professional pitcher throws a fast ball at a speed of 100 mph and a curve ball at 80 mph. What wavelengths are associated with the motions of the baseball? If the uncertainty in the position of the ball is 12 wavelength, which ball (fast ball or curve) has a more precisely known position? Can the uncertainty in the position of a curve ball be used to explain why batters frequently miss it?arrow_forwardA hydrogen atom in the ground stale absorbs a photon whose wavelength is 95.0 nm. The resulting excited atom then emits a photon of 1282 nm. What are the regions of the electromagnetic spectrum for the radiations involved in these transitions? What is the principal quantum number of the final state resulting from the emission from the excited atom?arrow_forward
- Given the following energy level diagram for an atom that contains an electron in the n = 3 level, answer the following questions. a Which transition of the electron will emit light of the lowest frequency? b Using only those levels depicted in the diagram, which transition of the electron would require the highest-frequency light? c If the transition from the n = 3 level to the n = 1 level emits green light, what color light is absorbed when an electron makes the transition from the n = 1 to n = 3 level?arrow_forwardAnswer the following questions about a Blu-ray laser: (a) The laser on a Blu-ray player has a wavelength of 405 nm. In what region of the electromagnetic spectrum is this radiation? What is its frequency? (b) A Blu-ray laser has a power of 5 millwatts (1watt=1Js1). How many photons of light are produced by the laser in 1 hour? (c) The ideal resolution of a player using a laser (such as a Blu-ray player), which determines how close together data can be stored on a compact disk, is determined using the following formula: Resolution =0.60(/NA), where A is the wavelength of the laser and NA is the numerical aperture. Numerical aperture is a measure of the size of the spot of light on the disk; the larger the NA, the smaller the spot. In a typical Blu-ray system, NA = 0.95. If the 405-nm laser is used in a Blu-ray player, what is the closest that information can be stored on a Blu-ray disk? (d) The data density of a Blu-ray disk using a 405-nm laser is 1.5107 bits mm2. Disks have an outside diameter of 120 mm and a hole of 15-mm diameter. How many data bits can be contained on the disk? If a Blu-ray disk can hold 9,400,000 pages of text, how many data bits are needed for a typed page? (Hint: Determine the area of the disk that is available to hold data. The area inside a circle is given by A=r2, where the radius r is one-half of the diameter.)arrow_forwardWarm objects emit electromagnetic radiation in the infrared region. Heat lamps employ this principle to generate infrared radiation. Water absorbs infrared radiation with wavelengths near 2.80 m. Suppose this radiation is absorbed by the water and converted to heat. A 1.00-L sample of water absorbs infrared radiation, and its temperature increases from 20.0C to 30.0C. How many photons of this radiation are used to heat the water?arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning