Concept explainers
Interpretation:
The minimum uncertainty in the velocity of a ping-pong ball is to be determined and a comment is to be made on the magnitude of the uncertainty in the speed.
Concept introduction:
According to the Heisenberg uncertainty principle, the product of the uncertainty in the position and the momentum of a particle cannot be less than
Here,
As momentum is the product of mass and velocity, the equation of the Heisenberg uncertainty principle can also be written as follows:
Here,
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
EBK CHEMISTRY
- 6.9 If a string of decorative lights includes bulbs with wave-lengths of 480, 580, and 700 mm, what are the frequencies of the lights? Use Figure 6.6 to determine which colors are in the set.arrow_forwardWhat experimental evidence supports the quantum theory of light? Explain the wave-particle duality of all matter .. For what size particles must one consider both the wave and the particle properties?arrow_forwardAn FM radio station found at 103.1 on the FM dial broadcasts at a frequency of 1.031188s1 (103.1 MHz). What is the wavelength of these radio waves in meters?arrow_forward
- A baseball weighs 142 g. A professional pitcher throws a fast ball at a speed of 100 mph and a curve ball at 80 mph. What wavelengths are associated with the motions of the baseball? If the uncertainty in the position of the ball is 12 wavelength, which ball (fast ball or curve) has a more precisely known position? Can the uncertainty in the position of a curve ball be used to explain why batters frequently miss it?arrow_forwardState how many radial, angular, and total nodes are in each of the following hydrogen-like wavefunctions. a 2s b 3s c 3p d 4f e 6g f 7sarrow_forwardIn 1885, Johann Balmer, a mathematician, derived the following relation for the wavelength of lines in the visible spectrum of hydrogen =364.5 n2( n2 4) where in nanometers and n is an integer that can be 3, 4, 5, . . . Show that this relation follows from the Bohr equation and the equation using the Rydberg constant. Note that in the Balmer series, the electron is returning to the n=2 level.arrow_forward
- 6.32 What are the mathematical origins of quantum numbers?arrow_forwardDraw, label, and explain the functions of the parts of a spectroscope.arrow_forwardInvestigating Energy Levels Consider the hypothetical atom X that has one electron like the H atom but has different energy levels. The energies of an electron in an X atom are described by the equation E=RHn3 where RH is the same as for hydrogen (2.179 1018 J). Answer the following questions, without calculating energy values. a How would the ground-state energy levels of X and H compare? b Would the energy of an electron in the n = 2 level of H be higher or lower than that of an electron in the n = 2 level of X? Explain your answer. c How do the spacings of the energy levels of X and H compare? d Which would involve the emission of a higher frequency of light, the transition of an electron in an H atom from the n = 5 to the n = 3 level or a similar transition in an X atom? e Which atom, X or H, would require more energy to completely remove its electron? f A photon corresponding to a particular frequency of blue light produces a transition from the n = 2 to the n = 5 level of a hydrogen atom. Could this photon produce the same transition (n = 12 to n = 5) in an atom of X? Explain.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning