Interpretation:
The maximum number of electrons in an atom and their specified orbital are to be determined.
Concept introduction:
Principle quantum number describes the size of orbital by determining the number of shells in which the electron revolves in an atom. It is denoted by
Azimuthal quantum number confirms the shape of atomic orbital by determining the number of subshells or orbitals in which the electron revolves. It is denoted by
orbitals
Magnetic quantum number describes the orientation of orbitals in space. It is denoted by
Electron spin quantum number specifies the direction in which the electron spins. There are two directions in which the electron spins opposite each other.
and
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
EBK CHEMISTRY
- Which of the following sets of quantum numbers correctly represents a 4p orbital? (a) n = 4, = 0, m = 1 (b) n = 4, = 1, m = 0 (c) n = 4, = 2, m = 1 (d) n = 4, = 1, m =2arrow_forwardWhat is the maximum number of electrons that can occupy a f subshell (l = 3)?arrow_forwardWhat experimental evidence supports the quantum theory of light? Explain the wave-particle duality of all matter .. For what size particles must one consider both the wave and the particle properties?arrow_forward
- What are quantum numbers? What information do we get from the quantum numbers n, l, and ml? We define a spin quantum number (ms), but do we know that an electron literally spins?arrow_forwardA bright violet line occurs at 435.8 nm in the emission spectrum of mercury vapor. What amount of energy, in joules, must be released by an electron in a mercury atom to produce a photon of this light?arrow_forwardGive the maximum number of electrons in an atom that can have these quantum numbers: a. n = 4 b. n = 5, ml = + l c. n = 5,ms = +12 d. n = 3, l = 2 e. n = 2, l = 1arrow_forward
- 6.32 What are the mathematical origins of quantum numbers?arrow_forwardImagine a world in which the rule for the l quantum number is that values start with 1 and go up to n. The rules for the n and mi quantum numbers are unchanged from those of our world. Write the quantum numbers for the first two shells (i.e., n = 1 and n = 2).arrow_forwardAccording to a relationship developed by Niels Bohr, for an atom or ion that has a single electron, the total energy, En, of an electron in a stable orbit of quantum number n is En = [Z2/n2] (2.179 1018 J) where Z is the atomic number. Calculate the ionization energy for the electron in a ground-state He+ ion.arrow_forward
- 6.96 When a helium atom absorbs light at 58.44 nm, an electron is promoted from the 1s orbital to a 2p orbital. Given that the ionization energy of (ground state) helium is 2372 kJ/ mol, find the longest wavelength of light that could eject an electron from the excited state helium atom.arrow_forwardLight with a wavelength of 405 nm fell on a strontium surface, and electrons were ejected. If the speed of an ejected electron is 3.36 105 m/s, what energy was expended in removing the electron from the metal? Express the answer in joules (per electron) and in kilojoules per mole (of electrons).arrow_forwardSpectroscopists have observed He+ in outer space. This ion is a one-electron species like a neutral hydrogen atom. Calculate the energy of the photon emitted for the transition from the n = 5 to the n = 3 state in this ion using the equation: En = − Z2/n2 (2.179 × 10−18 J). Z is the positive charge of the nucleus and n is the principal quantum number. In what part of the electromagnetic spectrum does this radiation lie?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co