Interpretation:
The fact that the spectral lines of Lyman and Balmer series do not overlap each other is to be verified by calculating longest wavelength associated with Lyman series and shortest wavelength associated with Balmer series.
Concept introduction:
Lyman series is a hydrogen spectral series of transitions and resulting ultraviolet emission lines of the hydrogen atom as an electron go from
On the other hand, the series of spectral emission lines of the hydrogen atom that result from electron transitions from higher levels down to the energy level with principal quantum number
The energy of the electron in hydrogen atom is as follows:
Here, n is considered as an integer and
The energy difference of the two states of an element is represented as:
Here, h is the Planck’s constant,
Answer to Problem 98AP
Solution: The spectral lines of Lyman and Balmer series do not overlap each other.
Explanation of Solution
The Planck’s constant is
The
The Lyman series deals with the excitation in first orbit.
The energy for the longest wavelength will be when the electron jumps from the second orbit to the Lyman series orbit.
So, the initial state
The energy of the electron in Lyman series orbit will be as follows:
Substitute 2 for
Calculate the wavelength as follows:
Rearrange the above equation as follows:
Substitute
Convert meter to nanometer as follows:
So, the longest wavelength of Lyman series is
The Balmer series deals with the excitation in second orbit.
The energy for the shortest wavelength will be when the electron jumps from the second orbit to the Lyman series orbit.
So, the initial state
The energy of the electron in Balmer series orbit will be:
Substitute
Calculate the wavelength as follows:
Rearrange the above equation as follows:
Substitute
Convert meter to nanometer as follows:
So, the shortest wavelength of Balmer series is
The spectral lines of Lyman and Balmer series do not overlap each other.
Want to see more full solutions like this?
Chapter 6 Solutions
Chemistry
- Calculate the wavelength of the Balmer line of the hydrogen spectrum in which the initial n quantum number is 5 and the final n quantum number is 2.arrow_forward• identify an orbital (as 1s, 3p, etc.) from its quantum numbers, or vice versa.arrow_forwardAccording to a relationship developed by Niels Bohr, for an atom or ion that has a single electron, the total energy, En, of an electron in a stable orbit of quantum number n is En = [Z2/n2] (2.179 1018 J) where Z is the atomic number. Calculate the ionization energy for the electron in a ground-state He+ ion.arrow_forward
- What are the allowed values for each of the four quantum numbers: n, l, ml, and ms?arrow_forwardAlthough no currently known elements contain electrons in g orbitals in the ground state, it is possible that these elements will be found or that electrons in excited states of known elements could being orbitals. For g orbitals, the value of l is 4. What is the lowest value of n for which g orbitals could exist? What are tile possible values of ml? How many electrons could a set of g orbitals hold?arrow_forward6.96 When a helium atom absorbs light at 58.44 nm, an electron is promoted from the 1s orbital to a 2p orbital. Given that the ionization energy of (ground state) helium is 2372 kJ/ mol, find the longest wavelength of light that could eject an electron from the excited state helium atom.arrow_forward
- describe trace analysis and explain its role in materials testing.arrow_forwardWhich of the following statements is (are) true? I. The product of wavelength and frequency of light is a constant. II. As the energy of electromagnetic radiation increases, its frequency decreases. III. As the wavelength of light increases, its frequency increases. a I only b II only c III only d I and III only e II and III onlyarrow_forwardOne bit of evidence that the quantum mechanical model is correct lies in the magnetic properties of matter. Atoms with unpaired electrons are attracted by magnetic fields and thus are said to exhibit pararamagnetism. The degree to which this effect is observed is directly related to the number of unpaired electrons present in the atom. Consider the ground-state electron configurations for Li, N, Ni, Te, Ba, and Hg. Which of these atoms would be expected to be paramagnetic, and how many unpaired electrons are present in each paramagnetic atom?arrow_forward
- 6.29 A mercury atom emits light at many wavelengths, two of which are at 435.8 and 546.1 nm. Both of these transitions are to the same final state. (a) What is the energy difference between the two states for each transition? (b) lf a transition between the two higher energy states could be observed, what would be the frequency of the light?arrow_forwardWhat major assumption (that was analogous to what had already been demonstrated for electromagnetic radiation) did de Broglie and Schrodinger make about the motion of tiny panicles?arrow_forwardThe photoelectric work function of potassium is 2.29 eV. A photon of energy greater than this ejects the electron with the excess as kinetic energy. Suppose light of wavelength 455 nm ejects an electron from the surface of potassium. What is the speed of the ejected electron?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning