Interpretation:
The correctness of the statements,“The first excited state of an electron in a hydrogen atomis
Concept introduction:
When an electron jumps from one energy state to another energy state, it is termed as transition of electron. Energy is either lost or absorbed during the transition of an electron. The transition energy
Here,
Energy of the electron for the given value of n (energy state)
Here,
The wavelength of an electron when it jumps from one energy state to another energy state is determined as follows:
Here,
Answer to Problem 109AP
Solution:
(a)False.
(b)False. In the state,
(c)True. The distance between the nucleus and the electron in
(d)False. Transition from
(e) True. The wavelength of light absorbed for transition from
Explanation of Solution
a)
First excited state is the energy state, which is immediate next to the ground state. Excited state can be counted as one less than the electron in the energy state. Therefore,
b)It takes more energy to ionize the electron from
The energy of electron for the given value of
The energy of electron in
Therefore,
Therefore, the energy required for removing an electron from
c) The electron is farther the nucleus in
The distance between the electrons in energy states increases as the value of
d) The wavelength of light emitted when the electron drops from
The wavelength of electron when it jumps from one energy state to another energy state can be evaluated as
For transition from
Therefore,
e) The wavelength the atom absorbs in going from
The wavelength of an electron when it jumps from one energy state to another energy state can be evaluated as
So,
The wavelength of radiation in both the cases can be compared as
On solving it further, we get
Therefore, the wavelength of the absorbed light during transition from
Want to see more full solutions like this?
Chapter 6 Solutions
Chemistry
- • identify an orbital (as 1s, 3p, etc.) from its quantum numbers, or vice versa.arrow_forwardLight with a wavelength of 405 nm fell on a strontium surface, and electrons were ejected. If the speed of an ejected electron is 3.36 105 m/s, what energy was expended in removing the electron from the metal? Express the answer in joules (per electron) and in kilojoules per mole (of electrons).arrow_forwardInvestigating Energy Levels Consider the hypothetical atom X that has one electron like the H atom but has different energy levels. The energies of an electron in an X atom are described by the equation E=RHn3 where RH is the same as for hydrogen (2.179 1018 J). Answer the following questions, without calculating energy values. a How would the ground-state energy levels of X and H compare? b Would the energy of an electron in the n = 2 level of H be higher or lower than that of an electron in the n = 2 level of X? Explain your answer. c How do the spacings of the energy levels of X and H compare? d Which would involve the emission of a higher frequency of light, the transition of an electron in an H atom from the n = 5 to the n = 3 level or a similar transition in an X atom? e Which atom, X or H, would require more energy to completely remove its electron? f A photon corresponding to a particular frequency of blue light produces a transition from the n = 2 to the n = 5 level of a hydrogen atom. Could this photon produce the same transition (n = 12 to n = 5) in an atom of X? Explain.arrow_forward
- A bright violet line occurs at 435.8 nm in the emission spectrum of mercury vapor. What amount of energy, in joules, must be released by an electron in a mercury atom to produce a photon of this light?arrow_forwardState which of the following sets of quantum numbers would be possible and which impossible for an electron in an atom. a n = 2, I = 0, mi = 0, ms=+12 b n = 1, I = 1, mi = 0, ms=+12 c n = 0, I = 0, mi = 0, ms=12 d n = 2, I = 1, mi = 1, ms=+12 e n = 2, I = 1, mi = 2, ms=+13arrow_forward6.17 The laser in most supermarket barcode scanners operates at a wavelength of 632.8 nm. What is the energy of a single photon emitted by such a laser? What is the energy of one mole of these photons?arrow_forward
- 6.32 What are the mathematical origins of quantum numbers?arrow_forwardHow many electrons in an atom can have the following quantum designation? (a) 1s (b) 4d, m l =0(c) n=5,l=2arrow_forwardPlanck originated the idea that energies can be quantized. What does the term quantized mean? What was Planck trying to explain when he was led to the concept of quantization of energy? Give the formula he arrived at and explain each of the terms in the formula.arrow_forward
- 6.29 A mercury atom emits light at many wavelengths, two of which are at 435.8 and 546.1 nm. Both of these transitions are to the same final state. (a) What is the energy difference between the two states for each transition? (b) lf a transition between the two higher energy states could be observed, what would be the frequency of the light?arrow_forward6.11 Define the term photon.arrow_forwardDescribe briefly why the study of electromagnetic radiation bas been important to our understanding of the arrangement of electrons in atomsarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning