
Concept explainers
Interpretation:
For the first four transitions in Balmer series, the wavelength is to be calculated for
Concept introduction:
The Balmer series corresponds to transitions
The wavelength of the electron when it jumps from one energy state to another is determined as
Here,
The relationship between meters and nanometers can be expresses as

Answer to Problem 105AP
Solution: For the first four transitions in the Balmer series, the wavelength of He+ ion in the increasing order is
Since the Rydberg constant for Hatom and He+ ion is different, Balmer transitions for He+ ion are in the ultraviolet region, whereas the transitions for Hatom are all in the visible region.
Explanation of Solution
Given information:
The first four transitions in the Balmer series are as follows:
For the firsttransition
For the second transition
For the third transition
For the fourth transition
Therefore, for the first four transitions in the Balmer series, the wavelength of He+ ion in the increasing order is
The Rydberg constant for Hatom is
For the first transition
For the second transition
For the third transition
For the fourth transition
Therefore, for the first four transitions in the Balmer series, the wavelength of Hatom in the decreasing order is
There is a huge difference between the wavelengths of Hatom and He+ ion for the first four transitions of the Balmer series, because the Rydberg constant for both of them is different, and all the Balmer transitions for He+ ion are in the ultraviolet region, whereas the transitions for Hatom are all in the visible region.
Since the Rydberg constant for Hatom and He+ ion is different, there is a huge difference between the wavelengths of Hatom and He+ ion for the first four transitions of the Balmer series. Balmer transitions for He+ ion are in the ultraviolet region, whereas the transitions for Hatom are all in the visible region.
Want to see more full solutions like this?
Chapter 6 Solutions
Chemistry
- What would be the best choices for the missing reagents 1 and 3 in this synthesis? 1. PPh3 3 2. n-BuLi • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Click and drag to start drawing a structure.arrow_forwardIdentify the missing organic reactants in the following reaction: X + Y H+ two steps Note: This chemical equation only focuses on the important organic molecules in the reaction. Additional inorganic or small-molecule reactants or products (like H2O) are not shown. In the drawing area below, draw the skeletal ("line") structures of the missing organic reactants X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. Х :arrow_forwardDraw the mechanism of friedel-crafts acylation using acetyl chloride of m-Xylenearrow_forward
- Don't used hand raiting and don't used Ai solution and correct answerarrow_forwardH R Part: 1/2 :CI: is a/an electrophile Part 2 of 2 Draw the skeletal structure of the product(s) for the Lewis acid-base reaction. Include lone pairs and formal charges (if applicable) on the structures. 4-7: H ö- H Skip Part Check X :C1: $ % L Fi Click and drag to start drawing a structure. MacBook Pro & ㅁ x G 0: P Add or increase positive formal cha Save For Later Submit ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centearrow_forwardDraw the friedel-crafts acylation mechanism of m-Xylenearrow_forward
- Don't used hand raiting and don't used Ai solutionarrow_forward1. Base on this experimental results, how do you know that the product which you are turning in is methyl 3-nitrobenzoate(meta substituted product ) rather than either of the other two products? 2. What observation suggests that at least a small amount of one or both of the other two isomers are in the mother liquor?arrow_forwardExplain Huckel's rule.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co




