Interpretation:
The uncertainty in the position of the electron with given speed is to be determined, a comment on the result is to be stated, and the uncertainty in the position of the ball is to be determined.
Concept introduction:
Heisenberg gave the uncertainty principle, which statethat the product of the uncertainty in position and momentum of a particle cannot be less than
It is represented as follows:
Here,
As momentum is the product of mass and velocity, the equation of Heisenberg uncertainty principle can also be represented as shown below:
Here,
The minimum uncertainty in speed is calculated by using the following relation:
The uncertainty in momentum can be evaluated as
The relationship between
The conversion factor is
Answer to Problem 116AP
Solution:
(a)
(b)
Explanation of Solution
a)The minimum uncertainty in an electron’s position
The mass of the electron is
The radius of a hydrogen atom is
The speed of the electron is
The uncertainty in speed can be evaluated as
So, the uncertainty in the speed of the electronis
The uncertainty in the position of theelectron can be evaluated as
Therefore, the uncertainty in the position of the electronis
Since the value for
The momentum of
b) Uncertainty in baseball’s position.
The momentum of
The uncertainty in momentum can be evaluated as
So, the uncertainty in the momentum of the baseball is
The value for
Therefore, the value for
Want to see more full solutions like this?
Chapter 6 Solutions
Chemistry
- What is the wavelength of a proton traveling at a speed of 6.21 km/s? What would be the region of the spectrum for electromagnetic radiation of this wavelength?arrow_forwardWhich of the following equations describe particle-like behavior? Which describe wavelike behavior? Do any involve both types of behavior? Describe the reasons for your choices. (a) c=v (b) E=mv22 (c) r=n2a0Z (d) E=hv (e) =hmvarrow_forward6.32 What are the mathematical origins of quantum numbers?arrow_forward
- At its closest approach, Mercury is 77.3 million km from Earth. How long would it take to send a radio message from a space probe of Mercury to Earth when the planets are at this closest distance?arrow_forwardA bright violet line occurs at 435.8 nm in the emission spectrum of mercury vapor. What amount of energy, in joules, must be released by an electron in a mercury atom to produce a photon of this light?arrow_forwardThe space probe Pioneer 11 was launched April 5, 1973, and reached Jupiter in December 1974, traveling a distance of 998 million km. How long did it take an electromagnetic signal to travel to Earth from Pioneer 11 when it was near Jupiter?arrow_forward
- A particular microwave oven delivers 750 watts. (A watt is a unit of power, which is the joules of energy delivered, or used, per second.) If the oven uses microwave radiation of wavelength 12.6 cm, how many photons of this radiation are required to heat 1.00 g of water 1.00C, assuming that all of the photons are absorbed?arrow_forwardLight with a wavelength of 405 nm fell on a strontium surface, and electrons were ejected. If the speed of an ejected electron is 3.36 105 m/s, what energy was expended in removing the electron from the metal? Express the answer in joules (per electron) and in kilojoules per mole (of electrons).arrow_forwardAn FM radio station found at 103.1 on the FM dial broadcasts at a frequency of 1.031188s1 (103.1 MHz). What is the wavelength of these radio waves in meters?arrow_forward
- According to a relationship developed by Niels Bohr, for an atom or ion that has a single electron, the total energy, En, of an electron in a stable orbit of quantum number n is En = [Z2/n2] (2.179 1018 J) where Z is the atomic number. Calculate the ionization energy for the electron in a ground-state He+ ion.arrow_forward• identify an orbital (as 1s, 3p, etc.) from its quantum numbers, or vice versa.arrow_forwardWhat is the de Broglie wavelength of a 149-g baseball traveling at 23.0 m/s (51.4 mph)? Is the wavelength much smaller or much larger than the diameter of an atom (on the order of 100 pm)?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax