Chemistry
Chemistry
4th Edition
ISBN: 9780078021527
Author: Julia Burdge
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 6, Problem 118AP
Interpretation Introduction

Interpretation:

The energy needed to remove an electron from  n=1 and  n=5 in the Li2+ ion and the wavelength of the emitted photon in a transition from n=5 ton=1 are to be determined.

Concept introduction:

When an electron jumps from one energy state to another energy state, it is termed as transition of electron. Energy is either lost or absorbed during the transition of electron. The transition energy (ΔE) is determined as follows:

ΔE=2.18×1018 J(1nf21ni2)

Here, nf is the excited state orbital, and ni is the ground state orbital.

The wavelength of a photon during a transition from one state to another can be expressed as follows:

1λ=2.18×1018 Jhc(1nf21ni2)

( because ΔE = hγ = hc/λ)

Here, nf is the excited state, and ni is the ground state, h is Planck’s constant (6.63×1034 Js), c is the speed of light (3.0×108 m/s), and λ is the wavelength.

Expert Solution & Answer
Check Mark

Answer to Problem 118AP

Solution: The energies needed to remove an electron from  n=1 and  n=5 in the Li2+ ion are 1.96×1017 J and 7.85×1019 J. The wavelength of the emitted photon in a transition is 10.6 nm

Explanation of Solution

Given information:

ΔE=Rhc(1n121n22)R=1.097×107 m1

n1=5 and n2=1

ni=5 and nf=1

The difference in energy levels is calculated by the expression given below.

ΔE=Rhc(1n121n22) …… (1)

The Rydberg constant for hydrogen-like atoms RZ2= (1.097×107m1)Z2.

For ni=1,nf=, and Z=3, the difference in energy is calculated by using equation (1) as follows:

ΔE=(1.097×107m1)(3)2(6.63×1034J.s)(3.00×108m/s)(12112)=1.96×1017 J

For ni=5,nf=, and Z=3, the difference in energy is calculated by using equation (1) as follows:

ΔE=(1.097×107m1)(3)2(6.63×1034J.s)(3.00×108m/s)(12152)=7.85×1019 J

The energies needed to remove an electron from  n=1 and  n=5 in the Li2+ ion are 1.96×1017 J and 7.85×1019 J.

Calculation of ΔE by using equation (1) as follows: ΔE=(1.097×107m1)(3)2(6.63×1034J.s)(3.00×108m/s)(112152)=1.88×1017 J

The wavelength of the emitted photon in the electronic transition from n=5 to n=1 is calculated by using the expression as follows:

λ=hcΔE

Substitute the values of h, c and ΔE.

λ=(6.63×1034Js)(3.00×108m/s)1.88×1017J=1.06×108m=10.6 nm

Conclusion

The energies needed to remove an electron from  n=1 and  n=5 in the Li2+

ion are 1.96×1017 J

and 7.85×1019 J respectively. The wavelength of the emitted photon in a transition is 10.6 nm.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 6 Solutions

Chemistry

Ch. 6.2 - Prob. 1CPCh. 6.2 - Prob. 2CPCh. 6.2 - Prob. 3CPCh. 6.2 - Prob. 4CPCh. 6.3 - Prob. 1PPACh. 6.3 - Practice Problem BUILD (a) Calculate the...Ch. 6.3 - Prob. 1PPCCh. 6.3 - Prob. 1CPCh. 6.3 - Prob. 2CPCh. 6.3 - Prob. 3CPCh. 6.3 - Prob. 4CPCh. 6.4 - Prob. 1PPACh. 6.4 - Prob. 1PPBCh. 6.4 - Prob. 1PPCCh. 6.4 - Prob. 1CPCh. 6.4 - Prob. 2CPCh. 6.5 - Practice ProblemATTEMPT Calculate the de Broglie...Ch. 6.5 - Prob. 1PPBCh. 6.5 - Prob. 1PPCCh. 6.5 - What is the minimum uncertainty in the position of...Ch. 6.5 - Prob. 2CPCh. 6.6 - Prob. 1PPACh. 6.6 - Prob. 1PPBCh. 6.6 - Prob. 1PPCCh. 6.6 - Prob. 1CPCh. 6.6 - Prob. 2CPCh. 6.6 - Prob. 3CPCh. 6.6 - Prob. 4CPCh. 6.7 - Practice Problem ATTEMPT (a) What are the possible...Ch. 6.7 - Practice ProblemBUILD (a) What is the lowest...Ch. 6.7 - Practice Problem CONCEPTUALIZE Imagine a cobbler's...Ch. 6.7 - Prob. 1CPCh. 6.7 - Prob. 2CPCh. 6.7 - Prob. 3CPCh. 6.7 - Prob. 4CPCh. 6.8 - Prob. 1PPACh. 6.8 - Prob. 1PPBCh. 6.8 - Prob. 1PPCCh. 6.8 - Prob. 1CPCh. 6.8 - What element is represented by the following...Ch. 6.8 - Which orbital diagram is correct for the...Ch. 6.9 - Practice Problem ATTEMPT Write the electron...Ch. 6.9 - Prob. 1PPBCh. 6.9 - Prob. 1PPCCh. 6.9 - Prob. 1CPCh. 6.9 - Prob. 2CPCh. 6.9 - 6.9.3 Which of the following is a d-block element?...Ch. 6.9 - Prob. 4CPCh. 6.10 - Practice ProblemATTEMPT Without referring to...Ch. 6.10 - Practice ProblemBUILD Without referring to Figure...Ch. 6.10 - Practice ProblemCONCEPTUALIZE Consider again the...Ch. 6 - Key Skills Problems What is the noble gas core for...Ch. 6 - Which of the following electron configurations...Ch. 6 - What element is represented by the electron...Ch. 6 - What is the electron configuration of the Lu atom?...Ch. 6 - What is a wave? Using a diagram, define the...Ch. 6 - 6.2 What are the units for wavelength and...Ch. 6 - List the types of electromagnetic radiation having...Ch. 6 - 6.4 Give the high and low wavelength values that...Ch. 6 - (a) What is the wavelength (in nm) of light having...Ch. 6 - 6.6 (a) What is the frequency of light having a...Ch. 6 - 6.7 The SI unit of time is the second, which is...Ch. 6 - 6.8 How many minutes would it take a radio wave to...Ch. 6 - The average distance between Mars and Earth is...Ch. 6 - 6.10 Four waves represent light in four different...Ch. 6 - Briefly explain Planck’s quantum theory and...Ch. 6 - Prob. 12QPCh. 6 - 6.13 Explain what is meant by the photoelectric...Ch. 6 - 6.14 What are photons? What role did Einstein’s...Ch. 6 - A photon has a wavelength of 705 nm. Calculate the...Ch. 6 - The blue color of the sky results from the...Ch. 6 - 6.17 A photon has a frequency of . (a) Convert...Ch. 6 - What is the wavelength (in nm) of radiation that...Ch. 6 - When copper is bombarded with high energy...Ch. 6 - 6.20 A particular form of electromagnetic...Ch. 6 - The retina of a human eye can detect light when...Ch. 6 - The radioactive 60 Co isotope is used in nuclear...Ch. 6 - Photosynthesis makes use of visible light or bring...Ch. 6 - A red light was shined onto a metal sample and the...Ch. 6 - A photoelectric experiment was performed by...Ch. 6 - What are emission spectra? How do line spectra...Ch. 6 - What is an energy level? Explain the difference...Ch. 6 - Briefly describe Bohr's theory of the hydrogen...Ch. 6 - The first line of the Balmer series occurs at a...Ch. 6 - 6.30 Calculate the wavelength (in nm) of a photon...Ch. 6 - Calculate the frequency (Hz) and wavelength (nm)...Ch. 6 - Careful spectral analysis shows that the familiar...Ch. 6 - 6.33 An electron in the hydrogen atom makes a...Ch. 6 - 6.34 Consider the following energy levels of a...Ch. 6 - Some copper compounds emit green light when they...Ch. 6 - Is it possible for a fluorescent material to emit...Ch. 6 - Explain how astronomers are able to tell which...Ch. 6 - How does do Broglie's hypothesis account for the...Ch. 6 - 6.39 Why is Equation 6.9 meaningful only for...Ch. 6 - Does a baseball in flight possess wave properties?...Ch. 6 - 6.41 Thermal neutrons are neutrons that move at...Ch. 6 - Protons can be accelerated to speeds near that of...Ch. 6 - 6.43 What is the de Broglie wavelength (in cm) of...Ch. 6 - 6.44 What is the de Broglie wavelength (in nm)...Ch. 6 - Prob. 45QPCh. 6 - Prob. 46QPCh. 6 - Prob. 47QPCh. 6 - How is the concept of electron density used to...Ch. 6 - 6.49 What is an atomic orbital? How does an atomic...Ch. 6 - 6.50 Alveoli are tiny sacs of air in the lungs....Ch. 6 - 6.51 The speed of a thermal neutron (see Problem...Ch. 6 - 6.52 In the beginning of the twentieth century,...Ch. 6 - Prob. 53QPCh. 6 - Prob. 54QPCh. 6 - Which quantum number defines a shell? Which...Ch. 6 - Prob. 56QPCh. 6 - Prob. 57QPCh. 6 - Prob. 58QPCh. 6 - Prob. 59QPCh. 6 - Prob. 60QPCh. 6 - Prob. 61QPCh. 6 - 6.62 List the hydrogen orbitals in increasing...Ch. 6 - Prob. 63QPCh. 6 - Prob. 64QPCh. 6 - Prob. 65QPCh. 6 - Give the values of the four quantum numbers of an...Ch. 6 - Prob. 67QPCh. 6 - Prob. 68QPCh. 6 - Why do the 3s, 3p, and 3d orbitals have the same...Ch. 6 - Prob. 70QPCh. 6 - Prob. 71QPCh. 6 - Prob. 72QPCh. 6 - Prob. 73QPCh. 6 - Prob. 74QPCh. 6 - Prob. 75QPCh. 6 - Prob. 76QPCh. 6 - Prob. 77QPCh. 6 - Prob. 78QPCh. 6 - Prob. 79QPCh. 6 - Prob. 80QPCh. 6 - Prob. 81QPCh. 6 - Prob. 82QPCh. 6 - Indicate the number of unpaired electrons present...Ch. 6 - Prob. 84QPCh. 6 - Prob. 85QPCh. 6 - Prob. 86QPCh. 6 - Describe the characteristics of transition metals.Ch. 6 - What is the noble gas core? How does it simplify...Ch. 6 - Prob. 89QPCh. 6 - Prob. 90QPCh. 6 - 6.91 Explain why the ground-state electron...Ch. 6 - 6.92 Write the electron configuration of a xenon...Ch. 6 - Prob. 93QPCh. 6 - Prob. 94QPCh. 6 - Prob. 95QPCh. 6 - Prob. 96QPCh. 6 - 6.97 Write the ground-state electron...Ch. 6 - Prob. 98APCh. 6 - Discuss the current view of the correctness of the...Ch. 6 - Distinguish carefully between the following terms:...Ch. 6 - Prob. 101APCh. 6 - Identify the following individuals and their...Ch. 6 - Prob. 103APCh. 6 - Prob. 104APCh. 6 - Prob. 105APCh. 6 - Prob. 106APCh. 6 - Prob. 107APCh. 6 - 6.108 Ionization energy is the minimum energy...Ch. 6 - Prob. 109APCh. 6 - Prob. 110APCh. 6 - Prob. 111APCh. 6 - All molecules undergo vibrational motions. Quantum...Ch. 6 - When an electron makes a transition between energy...Ch. 6 - Prob. 114APCh. 6 - Prob. 115APCh. 6 - Prob. 116APCh. 6 - 6.11 The wave function for the is orbital in the...Ch. 6 - Prob. 118APCh. 6 - Prob. 119APCh. 6 - Prob. 120APCh. 6 - 6.121 Calculate the wavelength and frequency of an...Ch. 6 - Prob. 122APCh. 6 - 6.123 In a photoelectric experiment a student uses...Ch. 6 - Prob. 124APCh. 6 - Prob. 125APCh. 6 - Prob. 126APCh. 6 - Prob. 127APCh. 6 - Prob. 128APCh. 6 - Prob. 129APCh. 6 - Prob. 130APCh. 6 - Prob. 131APCh. 6 - Prob. 132APCh. 6 - 6.133 Blackbody radiation is the term used to...Ch. 6 - Prob. 134APCh. 6 - Prob. 135APCh. 6 - How many photons at 586 nm must be absorbed to...Ch. 6 - Prob. 137APCh. 6 - Prob. 1SEPPCh. 6 - Prob. 2SEPPCh. 6 - What is the energy of a photon with wavelength λ...Ch. 6 - The visible region of the electromagnetic spectrum...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Quantum Numbers, Atomic Orbitals, and Electron Configurations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Aoi4j8es4gQ;License: Standard YouTube License, CC-BY
QUANTUM MECHANICAL MODEL/Atomic Structure-21E; Author: H to O Chemistry;https://www.youtube.com/watch?v=mYHNUy5hPQE;License: Standard YouTube License, CC-BY