Practical Management Science
6th Edition
ISBN: 9781337671989
Author: WINSTON
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 67P
Summary Introduction
To determine: The way to minimize the total distance.
Introduction: The variation between the present value of the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A person starting in Columbus must visit Great Falls, Odessa, and Brownsville, and then return home to Columbus in one car trip. The road mileage between the cities is shown.
Columbus
Great Falls
Odessa
Brownsville
Columbus
---
102
79
56
Great Falls
102
---
47
69
Odessa
79
47
---
72
Brownsville
56
69
72
---
a)Draw a weighted graph that represents this problem in the space below. Use the first letter of the city when labeling each
b) Find the weight (distance) of the Hamiltonian circuit formed using the nearest neighbor algorithm. Give the vertices in the circuit in the order they are visited in the circuit as well as the total weight (distance) of the circuit.
Creative Robotics (CR) manufactures two lightweight robots designed for easier house-cleaning. The Alpha-ONE model is older, heavier, and is designed for carpet cleaning. The Alpha-TWO model is newer, lighter, and is designed primarily for wooden floor cleaning. The management team is trying to identify how to minimize the total costs of producing these two models. Their full-time workers consist of primarily manufacturing experts and about 3 people are required to commit themselves to manufacture the Alpha-ONE model and 4 for the Alpha-TWO model, per day. They have a total pool of 100 full-time workers now but are willing to hire more manufacturers if required. Similarly, the Alpha-TWO model is more complex and management has a pool of 20 part-time technical workers to help with the complexity, every day. Again, they are willing to hire more part-time workers if required to assist with the Alpha-TWO model. As far as staff allocations for additional assistance in manufacturing…
The Federal government has passed valid legislation dealing with the insurance requirements of trucking companies who transport goods between provinces (this is an interprovincial concern). The federal law requires that transportation companies operating across provincial boundaries carry a minimum of 4 million dollars insurance.
The Provincial government has also passed valid legislation dealing with the insurance requirements of trucking companies within Nova Scotia. The provincial law requires trucking companies to carry a minimum of 6 million.
You are the owner of a Nova Scotia trucking company that operates in Nova Scotia, Prince Edward Island, New Brunswick, and Quebec and you only want to carry 4 million dollars of insurance.
Q: What is the constitutional doctrine of paramountcy, and could it help you “get rid of” the provincial legislation? Explain your answer.
Chapter 6 Solutions
Practical Management Science
Ch. 6.3 - Prob. 1PCh. 6.3 - Prob. 2PCh. 6.3 - Solve Problem 1 with the extra assumption that the...Ch. 6.3 - Prob. 4PCh. 6.3 - Prob. 5PCh. 6.3 - Prob. 6PCh. 6.3 - Prob. 7PCh. 6.3 - Prob. 8PCh. 6.3 - Prob. 9PCh. 6.3 - Prob. 10P
Ch. 6.4 - Prob. 11PCh. 6.4 - Prob. 12PCh. 6.4 - Prob. 13PCh. 6.4 - Prob. 14PCh. 6.4 - Prob. 15PCh. 6.4 - Prob. 16PCh. 6.4 - Prob. 17PCh. 6.4 - Prob. 18PCh. 6.4 - Prob. 19PCh. 6.4 - Prob. 20PCh. 6.4 - Prob. 21PCh. 6.4 - Prob. 22PCh. 6.4 - Prob. 23PCh. 6.5 - Prob. 24PCh. 6.5 - Prob. 25PCh. 6.5 - Prob. 26PCh. 6.5 - Prob. 28PCh. 6.5 - Prob. 29PCh. 6.5 - Prob. 30PCh. 6.5 - In the optimal solution to the Green Grass...Ch. 6.5 - Prob. 32PCh. 6.5 - Prob. 33PCh. 6.5 - Prob. 34PCh. 6.5 - Prob. 35PCh. 6.6 - Prob. 36PCh. 6.6 - Prob. 37PCh. 6.6 - Prob. 38PCh. 6 - Prob. 39PCh. 6 - Prob. 40PCh. 6 - Prob. 41PCh. 6 - Prob. 42PCh. 6 - Prob. 43PCh. 6 - Prob. 44PCh. 6 - Prob. 45PCh. 6 - Prob. 46PCh. 6 - Prob. 47PCh. 6 - Prob. 48PCh. 6 - Prob. 49PCh. 6 - Prob. 50PCh. 6 - Prob. 51PCh. 6 - Prob. 52PCh. 6 - Prob. 53PCh. 6 - Prob. 54PCh. 6 - Prob. 55PCh. 6 - Prob. 56PCh. 6 - Prob. 57PCh. 6 - Prob. 58PCh. 6 - Prob. 59PCh. 6 - Prob. 60PCh. 6 - Prob. 61PCh. 6 - Prob. 62PCh. 6 - Prob. 63PCh. 6 - Prob. 64PCh. 6 - Prob. 65PCh. 6 - Prob. 66PCh. 6 - Prob. 67PCh. 6 - Prob. 68PCh. 6 - Prob. 69PCh. 6 - Prob. 70PCh. 6 - Prob. 71PCh. 6 - Prob. 72PCh. 6 - Prob. 73PCh. 6 - Prob. 74PCh. 6 - Prob. 75PCh. 6 - Prob. 76PCh. 6 - Prob. 77PCh. 6 - Prob. 78PCh. 6 - Prob. 79PCh. 6 - Prob. 80PCh. 6 - Prob. 81PCh. 6 - Prob. 82PCh. 6 - Prob. 83PCh. 6 - Prob. 84PCh. 6 - Prob. 85PCh. 6 - Prob. 86PCh. 6 - Prob. 87PCh. 6 - Prob. 88PCh. 6 - Prob. 89PCh. 6 - Prob. 90PCh. 6 - Prob. 91PCh. 6 - Prob. 92PCh. 6 - This problem is based on Motorolas online method...Ch. 6 - Prob. 94PCh. 6 - Prob. 95PCh. 6 - Prob. 96PCh. 6 - Prob. 97PCh. 6 - Prob. 98PCh. 6 - Prob. 99PCh. 6 - Prob. 100PCh. 6 - Prob. 1CCh. 6 - Prob. 2CCh. 6 - Prob. 3.1CCh. 6 - Prob. 3.2CCh. 6 - Prob. 3.3CCh. 6 - Prob. 3.4CCh. 6 - Prob. 3.5CCh. 6 - Prob. 3.6C
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- Please see attached file.arrow_forwardLong-Life Insurance has developed a linear model that it uses to determine the amount of term life Insurance a family of four should have, based on the current age of the head of the household. The equation is: y=150 -0.10x where y= Insurance needed ($000) x = Current age of head of household b. Use the equation to determine the amount of term life Insurance to recommend for a family of four of the head of the household is 40 years old. (Round your answer to 2 decimal places.) Amount of term life insurance thousandsarrow_forwardThere are two companies manufacturing drones. Company A manufactures mass market drones, while company B manufactures customised drones according to customers’ requirements. In 2020, company A produces 3,200 drones, 3% of which were found to be defective and cannot pass the quality check. Company A employs 5 workers working an average of 8 hours a day in the drone production, and they worked 200 working days in 2020.In contrast, company B produces 900 drones, 10% of which were found to be defective and cannot pass the quality check. Company B employs 3 workers working an average of 6 hours a day in the drone production, and they worked 170 days in 2020. (a) If the drone manufacturing is seen as a process, what is considered as the output of the production processes of companies A and B and why? (b) Measure the single-factor manpower productivity for the two companies. (c) Is it reasonable to compare the manpower productivity of the two companies and reach a conclusion that one company…arrow_forward
- Maximize Z = x₁ + x₂, subject to X₁ X₂ ≤-3 2x₁ + 7x₂ ≤ 4 and x₁ ≥ 0, x₂ ≥ 0.arrow_forwardPls help ASAP for botharrow_forwardHeller Manufacturing has two production facilities that manufacture baseball gloves. Production costs at the two facilities differ because of varying labor rates, local property taxes, type of equipment, capacity, and so on. The Dayton plant has weekly costs that can be expressed as a function of the number of gloves produced TCD(X) = x2 - X + 3 where X is the weekly production volume in thousands of units and TCD(X) is the cost in thousands of dollars. The Hamilton plant's weekly production costs are given by TCH(Y) = y2 + 2Y + 2 where Y is the weekly production volume in thousands of units and TCH(Y) is the cost in thousands of dollars. Heller Manufacturing would like to produce 5,000 gloves per week at the lowest possible cost. (a) Formulate a mathematical model that can be used to determine the optimal number of gloves to produce each week at each facility. min s.t. = 5 X, Y 2 0 (b) Use Excel Solver or LINGO to find the solution to your mathematical model to determine the optimal…arrow_forward
- A company makes three types of candy and packages them in three assortments. Assortment I contains 4 cherry, 4 lemon, and 12 lime candies, and sells for a profit of $4.00. Assortment Il contains 12 cherry, 4 lemon, and 4 lime candies, and sells for a profit of $3.00. Assortment III contains 8 cherry, 8 lemon, and 8 lime candies, and sells for a profit of $5.00. They can make 5,200 cherry, 4,000 lemon, and 6,000 lime candies weekly. How many boxes of each type should the company produce each week in order to maximize its profit (assuming that all boxes produced can be sold)? What is the maximum profit? Select the correct choice below and fill in any answer boxes within your choice. OA. The maximum profit is $ when boxes of assortment 1. boxes of assortment II and assortment III are produced. OB. There is no way for the company to maximize its profit boxes ofarrow_forwardAuthor: Leo A. Ruggle, Professor, Department of Accounting, Mankato State University Arnie Armstrong has been with Pierce Auto Parts Manufacturing Company for 23 years. Recently, he was appointed Director of Manufacturing Computer Services. In just six weeks in this new position, [he] has moved to reduce the amount of information provided to manufacturing department managers by 60 percent. He argues that excess data is distracting, unused, and expensive to provide. Willy McClean has been department manager for 12 years. During a coffee break with some of his department production supervisors, Willy is quite vocal about the change. “Who’s this guy Armstrong to tell us what data we need? He needs to be out here for a few weeks to find out what it’s like. Keep it quiet, but I’ve got a contact in Computer Services who’ll get me all the data analyses I want for just a $20 bill each month. It’s a good deal, and Armstrong will never know. How does he expect us to make good decisions about…arrow_forwardMinimize Z= x1+2x2-3x3-2x4 subject to: x1+2x2-3x3+x4=4 x1+2x2+x3+2x4=4 x1, x2, x3,x4 are equal or greater then zeroarrow_forward
- Heller Manufacturing has two production facilities that manufacture baseball gloves. Production costs at the two facilities differ because of varying labor rates, local property taxes, type of equipment, capacity, and so on. The Dayton plant has weekly costs that can be expressed as a function of the number of gloves produced TCD(X) = x² - X + 9 where X is the weekly production volume in thousands of units and TCD(X) is the cost in thousands of dollars. The Hamilton plant's weekly production costs are given by TCH(Y) = y² + 2Y + 6 where Y is the weekly production volume in thousands of units and TCH(Y) is the cost in thousands of dollars. Heller Manufacturing would like to produce 9,000 gloves per week at the lowest possible cost. (a) Formulate a mathematical model that can be used to determine the optimal number of gloves to produce each week at each facility. X²-X+9+²+2Y+6 min s.t. X+Y X, Y 20 = 9 (b) Use Excel Solver or LINGO to find the solution to your mathematical model to…arrow_forwardFacility Location. A paper products manufacturer has enough capital to build and manage some additional manufacturing plants in the United States in order to meet increased demand in three cities: New York City, NY; Los Angeles, CA; and Topeka, KS. The company is considering building in Denver, CO; Seattle, WA; and St. Louis, MO. Max Operating Capacity 400 tons/day 700 tons/day Denver Seattle $10/ton $17/tor $5/ton $11/ton.... $18/ton.... $28/ton Los Angeles Topeka New York City Figure 1: Graphical representation of the given data = • The cost fi of building plants in these cities is fi $10,000,000 in Seattle. Unmet Demand 300 tons/day 100 tons/day 500 tons/day • Due to geographic constraints, plants in Denver and Seattle would have a maximum operating capacity kį of 400 tons/day and 700 tons/day respectively. $5,000,000 in Denver and f2 = • The cost cij per ton of transporting paper from city i to city j is outlined in Figure 1. • The unmet demand d, for Los Angeles, Topeka, and New…arrow_forwardWhich of the following statements concerning the transshipment problem is false? There can be constraints on the number of units shipped into a destination point. O Any units shipped from one origin point must all go to the same destination point. O The transshipment problem can be solved with linear programming. O There can be constraints on the number of units shipped out of an origin point.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,