Practical Management Science
6th Edition
ISBN: 9781337671989
Author: WINSTON
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 40P
Summary Introduction
To determine: The investment plan that would maximize the NPV.
Introduction: The variation between the present value of the
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The Schoch Museum (see Problem 30 in Chapter 11) is embarking on a five-year fundraising campaign. As a nonprofit institution, the museum finds it challenging to acquire new donors, as many donors do not contribute every year. Suppose that the museum has identified a pool of 8,000 potential donors. The actual number of donors in the first year of the campaign is estimated to be somewhere between 60% and 75% of this pool. For each subsequent year, the museum expects that a certain percentage of current donors will discontinue their contributions. This is expected to be between 10% and 60%, with a most likely value of 35%. In addition, the museum expects to attract some percentage of new donors. This is assumed to be between 5% and 40% of the current year’s donors, with a most likely value of 10%. The average contribution in the first year is assumed to be $50 and will increase at a rate between 0% and 8% each subsequent year, with the most likely increase of 2.5%. Develop and analyze a…
You are also given the following table of average returns over the last 50 years:
Stocks
T-Bonds
T-Bills
Arithmetic
Geometric
Arithmetic
Geometric
Arithmetic
Geometric
0.118
0.107
0.064
0.058
0.041
0.039
If you were asked to compute the equity risk premium for Steel Products, using the historical
approach, what would your best estimate be?
The largest investor in Steel Products is the owner/founder who owns 20% of the stock. Is she also the
marginal investor in this stock? If your answer is yes write 1 and if your answer is No write 2 in the box.
9) Today is your 20th birthday. Your parents just gave you $5,000 that you plan to use to open a stock brokerage account. Your plan is to add $500 to the account each year on your birthday. Your first $500 contribution will come one year from now on your 21st birthday. Your 45th and final $500 contribution will occur on your 65th birthday. You plan to withdraw $5,000 from the account five years from now on your 25th birthday to take a trip to Europe. You also anticipate that you will need to withdraw $10,000 from the account 10 years from now on your 30th birthday to take a trip to Asia. You expect that the account will have an average annual return of 12 percent. How much money do you anticipate that you will have in the account on your 65th birthday, following your final contribution?
Chapter 6 Solutions
Practical Management Science
Ch. 6.3 - Prob. 1PCh. 6.3 - Prob. 2PCh. 6.3 - Solve Problem 1 with the extra assumption that the...Ch. 6.3 - Prob. 4PCh. 6.3 - Prob. 5PCh. 6.3 - Prob. 6PCh. 6.3 - Prob. 7PCh. 6.3 - Prob. 8PCh. 6.3 - Prob. 9PCh. 6.3 - Prob. 10P
Ch. 6.4 - Prob. 11PCh. 6.4 - Prob. 12PCh. 6.4 - Prob. 13PCh. 6.4 - Prob. 14PCh. 6.4 - Prob. 15PCh. 6.4 - Prob. 16PCh. 6.4 - Prob. 17PCh. 6.4 - Prob. 18PCh. 6.4 - Prob. 19PCh. 6.4 - Prob. 20PCh. 6.4 - Prob. 21PCh. 6.4 - Prob. 22PCh. 6.4 - Prob. 23PCh. 6.5 - Prob. 24PCh. 6.5 - Prob. 25PCh. 6.5 - Prob. 26PCh. 6.5 - Prob. 28PCh. 6.5 - Prob. 29PCh. 6.5 - Prob. 30PCh. 6.5 - In the optimal solution to the Green Grass...Ch. 6.5 - Prob. 32PCh. 6.5 - Prob. 33PCh. 6.5 - Prob. 34PCh. 6.5 - Prob. 35PCh. 6.6 - Prob. 36PCh. 6.6 - Prob. 37PCh. 6.6 - Prob. 38PCh. 6 - Prob. 39PCh. 6 - Prob. 40PCh. 6 - Prob. 41PCh. 6 - Prob. 42PCh. 6 - Prob. 43PCh. 6 - Prob. 44PCh. 6 - Prob. 45PCh. 6 - Prob. 46PCh. 6 - Prob. 47PCh. 6 - Prob. 48PCh. 6 - Prob. 49PCh. 6 - Prob. 50PCh. 6 - Prob. 51PCh. 6 - Prob. 52PCh. 6 - Prob. 53PCh. 6 - Prob. 54PCh. 6 - Prob. 55PCh. 6 - Prob. 56PCh. 6 - Prob. 57PCh. 6 - Prob. 58PCh. 6 - Prob. 59PCh. 6 - Prob. 60PCh. 6 - Prob. 61PCh. 6 - Prob. 62PCh. 6 - Prob. 63PCh. 6 - Prob. 64PCh. 6 - Prob. 65PCh. 6 - Prob. 66PCh. 6 - Prob. 67PCh. 6 - Prob. 68PCh. 6 - Prob. 69PCh. 6 - Prob. 70PCh. 6 - Prob. 71PCh. 6 - Prob. 72PCh. 6 - Prob. 73PCh. 6 - Prob. 74PCh. 6 - Prob. 75PCh. 6 - Prob. 76PCh. 6 - Prob. 77PCh. 6 - Prob. 78PCh. 6 - Prob. 79PCh. 6 - Prob. 80PCh. 6 - Prob. 81PCh. 6 - Prob. 82PCh. 6 - Prob. 83PCh. 6 - Prob. 84PCh. 6 - Prob. 85PCh. 6 - Prob. 86PCh. 6 - Prob. 87PCh. 6 - Prob. 88PCh. 6 - Prob. 89PCh. 6 - Prob. 90PCh. 6 - Prob. 91PCh. 6 - Prob. 92PCh. 6 - This problem is based on Motorolas online method...Ch. 6 - Prob. 94PCh. 6 - Prob. 95PCh. 6 - Prob. 96PCh. 6 - Prob. 97PCh. 6 - Prob. 98PCh. 6 - Prob. 99PCh. 6 - Prob. 100PCh. 6 - Prob. 1CCh. 6 - Prob. 2CCh. 6 - Prob. 3.1CCh. 6 - Prob. 3.2CCh. 6 - Prob. 3.3CCh. 6 - Prob. 3.4CCh. 6 - Prob. 3.5CCh. 6 - Prob. 3.6C
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- Suppose you begin year 1 with 5000. At the beginning of each year, you put half of your money under a mattress and invest the other half in Whitewater stock. During each year, there is a 40% chance that the Whitewater stock will double, and there is a 60% chance that you will lose half of your investment. To illustrate, if the stock doubles during the first year, you will have 3750 under the mattress and 3750 invested in Whitewater during year 2. You want to estimate your annual return over a 30-year period. If you end with F dollars, your annual return is (F/5000)1/30 1. For example, if you end with 100,000, your annual return is 201/30 1 = 0.105, or 10.5%. Run 1000 replications of an appropriate simulation. Based on the results, you can be 95% certain that your annual return will be between which two values?arrow_forwardSuppose you currently have a portfolio of three stocks, A, B, and C. You own 500 shares of A, 300 of B, and 1000 of C. The current share prices are 42.76, 81.33, and, 58.22, respectively. You plan to hold this portfolio for at least a year. During the coming year, economists have predicted that the national economy will be awful, stable, or great with probabilities 0.2, 0.5, and 0.3. Given the state of the economy, the returns (one-year percentage changes) of the three stocks are independent and normally distributed. However, the means and standard deviations of these returns depend on the state of the economy, as indicated in the file P11_23.xlsx. a. Use @RISK to simulate the value of the portfolio and the portfolio return in the next year. How likely is it that you will have a negative return? How likely is it that you will have a return of at least 25%? b. Suppose you had a crystal ball where you could predict the state of the economy with certainty. The stock returns would still be uncertain, but you would know whether your means and standard deviations come from row 6, 7, or 8 of the P11_23.xlsx file. If you learn, with certainty, that the economy is going to be great in the next year, run the appropriate simulation to answer the same questions as in part a. Repeat this if you learn that the economy is going to be awful. How do these results compare with those in part a?arrow_forwardYou are considering a 10-year investment project. At present, the expected cash flow each year is 10,000. Suppose, however, that each years cash flow is normally distributed with mean equal to last years actual cash flow and standard deviation 1000. For example, suppose that the actual cash flow in year 1 is 12,000. Then year 2 cash flow is normal with mean 12,000 and standard deviation 1000. Also, at the end of year 1, your best guess is that each later years expected cash flow will be 12,000. a. Estimate the mean and standard deviation of the NPV of this project. Assume that cash flows are discounted at a rate of 10% per year. b. Now assume that the project has an abandonment option. At the end of each year you can abandon the project for the value given in the file P11_60.xlsx. For example, suppose that year 1 cash flow is 4000. Then at the end of year 1, you expect cash flow for each remaining year to be 4000. This has an NPV of less than 62,000, so you should abandon the project and collect 62,000 at the end of year 1. Estimate the mean and standard deviation of the project with the abandonment option. How much would you pay for the abandonment option? (Hint: You can abandon a project at most once. So in year 5, for example, you abandon only if the sum of future expected NPVs is less than the year 5 abandonment value and the project has not yet been abandoned. Also, once you abandon the project, the actual cash flows for future years are zero. So in this case the future cash flows after abandonment should be zero in your model.)arrow_forward
- You want to take out a 450,000 loan on a 20-year mortgage with end-of-month payments. The annual rate of interest is 3%. Twenty years from now, you will need to make a 50,000 ending balloon payment. Because you expect your income to increase, you want to structure the loan so at the beginning of each year, your monthly payments increase by 2%. a. Determine the amount of each years monthly payment. You should use a lookup table to look up each years monthly payment and to look up the year based on the month (e.g., month 13 is year 2, etc.). b. Suppose payment each month is to be the same, and there is no balloon payment. Show that the monthly payment you can calculate from your spreadsheet matches the value given by the Excel PMT function PMT(0.03/12,240, 450000,0,0).arrow_forwardIn the financial world, there are many types of complex instruments called derivatives that derive their value from the value of an underlying asset. Consider the following simple derivative. A stocks current price is 80 per share. You purchase a derivative whose value to you becomes known a month from now. Specifically, let P be the price of the stock in a month. If P is between 75 and 85, the derivative is worth nothing to you. If P is less than 75, the derivative results in a loss of 100(75-P) dollars to you. (The factor of 100 is because many derivatives involve 100 shares.) If P is greater than 85, the derivative results in a gain of 100(P-85) dollars to you. Assume that the distribution of the change in the stock price from now to a month from now is normally distributed with mean 1 and standard deviation 8. Let EMV be the expected gain/loss from this derivative. It is a weighted average of all the possible losses and gains, weighted by their likelihoods. (Of course, any loss should be expressed as a negative number. For example, a loss of 1500 should be expressed as -1500.) Unfortunately, this is a difficult probability calculation, but EMV can be estimated by an @RISK simulation. Perform this simulation with at least 1000 iterations. What is your best estimate of EMV?arrow_forwardThe IRR is the discount rate r that makes a project have an NPV of 0. You can find IRR in Excel with the built-in IRR function, using the syntax =IRR(range of cash flows). However, it can be tricky. In fact, if the IRR is not near 10%, this function might not find an answer, and you would get an error message. Then you must try the syntax =IRR(range of cash flows, guess), where guess" is your best guess for the IRR. It is best to try a range of guesses (say, 90% to 100%). Find the IRR of the project described in Problem 34. 34. Consider a project with the following cash flows: year 1, 400; year 2, 200; year 3, 600; year 4, 900; year 5, 1000; year 6, 250; year 7, 230. Assume a discount rate of 15% per year. a. Find the projects NPV if cash flows occur at the ends of the respective years. b. Find the projects NPV if cash flows occur at the beginnings of the respective years. c. Find the projects NPV if cash flows occur at the middles of the respective years.arrow_forward
- Use excel for this problem A trust officer at the Blacksburg National Bank needs to determine how to invest $150,000 in the following collection of bonds to maximize the annual return. Bond Annual Return Maturity Risk Tax Free A 9.5% Long High Yes B 8.0% Short Low Yes C 9.0% Long Low No D 9.0% Long High Yes E 9.0% Short High No The officer wants to invest at least 40% of the money in short-term issues and no more than 20% in high-risk issues. At least 25% of the funds should go in tax-free investments, and at least 45% of the total annual return should be tax free. Formulate the LP model for this problem. Create the spreadsheet model and use Solver to solve the problem.arrow_forwardPlease zoom it for clere imagearrow_forwardThe Free Cash Flow model has the following advantage over the Dividend Growth model: In the case of variable growth, it does not require the calculation of any horizon value. It can be applied even if growth rates are unknown. It can be applied to companies with variable growth in the initial years that eventually settle down to a fixed rate of growth for the long term. It can be applied to divisions of companies. O It does not require any forecasting.arrow_forward
- Portfolio Management If x dollars are invested in a company that controls, say, 30% of the market with five brand-names, then 0.30x is a measure of market exposure and 5x is a measure of brand-name exposure. Now suppose you are a broker at a large securities firm, and one of your clients would like to invest up to $500,000 in recording industry stocks. You decide to recommend a combination of stocks in four of the world's largest recording companies: Warner Music, Universal Music, Sony, and EMI. (See the table.)+ Market Share Number of Labels (Brands) Warner Music 12% 8 Universal Music 20% 20 Sony EMI 20% 10 15% 15 You would like your client to maximize his total market exposure but limit his brand-name exposure to 7.5 million or less (representing an average of 15 labels or fewer per company), and still invest at least 20% of the total in Universal because you feel that its control of the DGG and Phillips labels is advantageous for its classical music operations. How much should you…arrow_forwardThe following statements are factual discussions about Capitalization of Earnings Method except: Select the correct response: You may use past earnings in the Capitalization of Earnings method for cases wherein earnings are fixed. In capitalization of earnings method, the value of the asset or the investment is determined using the anticipated earnings of the company divided by the cost of capital. Cost of Capital used in the Capitalization of Earnings method is equivalent to the expected yield or the required rate of return. The formula used in Capitalization of Earnings is actually grossing up the future earnings using capitalization rate to come up with the estimated asset value.arrow_forwardOxicon Inc. manufactures several different types of candy for various retail stores. The accountingmanager has requested that you determine the sales dollars required to break even for next quarter based on past financial data. Your research tells you that the total variable costs will be $500,000,total sales will be $750,000, and fixed costs will be $75,000. What is the breakeven point in salesdollars?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,