Concept explainers
(a)
Interpretation: An overall reaction for the production of methane needs to be determined.
Concept Introduction : The reaction of coal with water is as follows:
Here, coal reacts with superheated steam to give CO and
(a)
Answer to Problem 6.75P
Overall reaction is
Explanation of Solution
Multiply equation (1) by 2 and add equation (1) and (2) and (3).
Overall reaction is
(b)
Interpretation: The value of
Concept Introduction:
(b)
Answer to Problem 6.75P
Explanation of Solution
Multiply equation (1) by 2 and add equation (1) and (2) and (3).
(c)
Interpretation: The total heat for gasifying 1.00 kg of coal needs to be determined.
Concept Introduction : The balanced reaction for combustion of methane is:
Methane reacts with oxygen to give carbon dioxide and water.
Here, m and n are moles of products and reactants.
(c)
Answer to Problem 6.75P
The total heat is
Explanation of Solution
The balanced reaction for combustion of methane is:
Now use following conversion factors to determine the heat for combustion of 1.00 kg of methane.
The conversion factors are as follows:
Use the conversion factors to determine the heat for 1.00 kg of coal.
Thus, the heat for combustion of 1.00 kg of methane is
Thus, the total heat is
Want to see more full solutions like this?
Chapter 6 Solutions
Principles of General Chemistry
- Natural gas companies in the United States use the therm as a unit of energy. One therm is 1105 BTU. (a) How many joules are in one therm? (1J=9.48104BTU) (b) When propane gas, C3H8, is burned in oxygen, CO2 and steam are produced. How many therms of energy are given off by 1.00 mol of propane gas?arrow_forwardHypothetical elements A2 and B2 react according to the following equation, forming the compound AB. A2(aq)+B2(aq)2AB(aq);H=+271kJ/mol If solutions A2(aq) and B2(aq), starting at the same temperature, are mixed in a coffee-cup calorimeter, the reaction that occurs is a exothermic, and the temperature of the resulting solution rises. b endothermic, and the temperature of the resulting solution rises. c endothermic, and the temperature of the resulting solution falls. d exothermic, and the temperature of the resulting solution falls. e exothermic or endothermic, depending on the original and final temperatures.arrow_forwardPropane, C3H8, is a common fuel gas. Use the following to calculate the grams of propane you would need to provide 369 kJ of heat. C3H8(g)+5O2(g)3CO2(g)+4H2O(g);H=2043kJarrow_forward
- Sulfur dioxide gas reacts with oxygen, O2(g), to produce SO3(g). This reaction releases 99.0 kJ of heat (at constant pressure) for each mole of sulfur dioxide that reacts. Write the thermochemical equation for the reaction of 2 mol of sulfur dioxide, and then also for the decomposition of 3 mol of sulfur trioxide gas into oxygen gas and sulfur dioxide gas. Do you need any other information to answer either question?arrow_forwardWhen calcium carbonate, CaCO3 (the major constituent of limestone and seashells), is heated, it decomposes to calcium oxide (quicklime). CaCO3(s)CaO(s)+CO2(g);H=177.9kJ How much heat is required to decompose 21.3 g of calcium carbonate?arrow_forwardHydrogen is an ideal fuel in many respects; for example, the product of its combustion, water, is nonpolluting. The heat given off in burning hydrogen to gaseous water is 5.16 104 Btu per pound. What is this heat energy in joules per gram? (1 Btu = 252 cal; see also Table 1.4.)arrow_forward
- A rebreathing gas mask contains potassium superoxide, KO2, which reacts with moisture in the breath to give oxygen. 4KO2(s)+2H2O(l)4KOH(s)+3O2(g) Estimate the grams of potassium superoxide required to supply a persons oxygen needs for one hour. Assume a person requires 1.00 102 kcal of energy for this time period. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 1.00 102 kcal of heat, calculate the amount of oxygen consumed and hence the amount of KO2 required. The ff0 for glucose(s) is 1273 kJ/mol.arrow_forwardA 110.-g sample of copper (specific heat capacity = 0.20 J/C g) is heated to 82.4C and then placed in a container of water at 22.3C. The final temperature of the water and copper is 24.9C. What is the mass of the water in the container, assuming that all the heat lost by the copper is gained by the water?arrow_forwardHow much heat is absorbed by a 44.7-g piece of leadwhen its temperature increases by 65.4°C?arrow_forward
- Consider the following reaction in a vessel with a movable piston. R(g)+T(g)X(g)As the reaction takes place, the piston loses 1072 J of heat. The piston moves down and the surroundings do 549 J of work on the system. What is E?arrow_forwardQuinone is an important type of molecule that is involved in photosynthesis. The transport of electrons mediated by quinone in certain enzymes allows plants to take water, carbondioxide, and the energy of sunlight to create glucose. A 0.1964-g sample of quinone (C6H4O2) is burned in a bomb calorimeter with a heat capacity of 1.56 kJ/C. The temperature of the calorimeter increases by 3.2C. Calculate the energy of combustion of quinone per gram and per mole.arrow_forwardA _________ is a device used to determine the heat associated with a chemical reaction.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax