Chemistry: Atoms First
2nd Edition
ISBN: 9780073511184
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 6.64QP
(a)
Interpretation Introduction
Interpretation: The resonance structure of the given ion should be drawn.
Concept Introduction:
- Sometimes the
chemical bonding of a molecule cannot be represented using a single Lewis structure. In these cases, the chemical bonding are described by delocalization of electrons and is known as resonance. - All the possible resonance structures are imaginary whereas the resonance hybrid is real.
- These structures will differ only in the arrangement of the electrons not in the relative position of the atomic nuclei.
(b)
Interpretation Introduction
Interpretation: The resonance structure of the given ion should be drawn.
Concept Introduction:
- Sometimes the chemical bonding of a molecule cannot be represented using a single Lewis structure. In these cases, the chemical bonding are described by delocalization of electrons and is known as resonance.
- All the possible resonance structures are imaginary whereas the resonance hybrid is real.
- These structures will differ only in the arrangement of the electrons not in the relative position of the atomic nuclei.
(c)
Interpretation Introduction
Interpretation: The resonance structure of the given ion should be drawn.
Concept Introduction:
- Sometimes the chemical bonding of a molecule cannot be represented using a single Lewis structure. In these cases, the chemical bonding are described by delocalization of electrons and is known as resonance.
- All the possible resonance structures are imaginary whereas the resonance hybrid is real.
- These structures will differ only in the arrangement of the electrons not in the relative position of the atomic nuclei.
(d)
Interpretation Introduction
Interpretation: The resonance structure of the given ion should be drawn.
Concept Introduction:
- Sometimes the chemical bonding of a molecule cannot be represented using a single Lewis structure. In these cases, the chemical bonding are described by delocalization of electrons and is known as resonance.
- All the possible resonance structures are imaginary whereas the resonance hybrid is real.
- These structures will differ only in the arrangement of the electrons not in the relative position of the atomic nuclei.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the following compounds: BeCl 2 , MgBr 2 , and SrBr 2 . Answer the following questions based on expected periodic trends:
(a) Which is expected to have the shortest ionic bonds?
(b) Which is expected to have the highest lattice energy?
(c) Which is expected to have the lowest melting point?
Which of the following sets contains an ionic compound, a molecular compound, and an acid, in that order?
(A) Al2O3, B2O3, CH3OH;
(B) CaCl2, NH4Cl, HCl;
(C) CH3F, COCl2, HOCl;
(D) CoCl2, COCl2, HClO2.
A resident expert on electronegativity comes up to visit with you. He makes two claims (seen below) about electronegativity with relation to covalent bonding. Is the expert correct or can you refute him with your knowledge of electronegativity?
(a) If a diatomic molecule is made up of atoms X and Y, which have different electronegativities, the molecule must be polar.
(b) The farther two atoms are apart in a bond, the larger the dipole moment will be.
Chapter 6 Solutions
Chemistry: Atoms First
Ch. 6.2 - Classify the following bonds as nonpolar, polar,...Ch. 6.2 - Classify the following bonds as nonpolar, polar,...Ch. 6.2 - Prob. 1PPBCh. 6.2 - Electrostatic potential maps are shown for HCl and...Ch. 6.2 - Prob. 6.2WECh. 6.2 - Prob. 2PPACh. 6.2 - Prob. 2PPBCh. 6.2 - Prob. 2PPCCh. 6.2 - Prob. 6.3WECh. 6.2 - Prob. 3PPA
Ch. 6.2 - Prob. 3PPBCh. 6.2 - Prob. 3PPCCh. 6.2 - Prob. 6.2.1SRCh. 6.2 - Prob. 6.2.2SRCh. 6.2 - Prob. 6.2.3SRCh. 6.2 - Prob. 6.2.4SRCh. 6.3 - Draw the Lewis structure for carbon disulfide...Ch. 6.3 - Prob. 4PPACh. 6.3 - Prob. 4PPBCh. 6.3 - Prob. 4PPCCh. 6.3 - Prob. 6.3.1SRCh. 6.3 - Prob. 6.3.2SRCh. 6.4 - The widespread use of fertilizers has resulted in...Ch. 6.4 - Prob. 5PPACh. 6.4 - Prob. 5PPBCh. 6.4 - Prob. 5PPCCh. 6.4 - Formaldehyde (CH2O), which can be used 10 preserve...Ch. 6.4 - Prob. 6PPACh. 6.4 - Prob. 6PPBCh. 6.4 - Prob. 6PPCCh. 6.4 - Prob. 6.4.1SRCh. 6.4 - Prob. 6.4.2SRCh. 6.5 - Prob. 6.7WECh. 6.5 - Prob. 7PPACh. 6.5 - Prob. 7PPBCh. 6.5 - Prob. 7PPCCh. 6.5 - Prob. 6.5.1SRCh. 6.5 - Prob. 6.5.2SRCh. 6.6 - Prob. 6.8WECh. 6.6 - Prob. 8PPACh. 6.6 - Prob. 8PPBCh. 6.6 - Prob. 8PPCCh. 6.6 - Prob. 6.9WECh. 6.6 - Prob. 9PPACh. 6.6 - Prob. 9PPBCh. 6.6 - Elements in the same group exhibit similar...Ch. 6.6 - Prob. 6.10WECh. 6.6 - Draw three resonance structures for the hydrogen...Ch. 6.6 - Draw two resonance structures for each speciesone...Ch. 6.6 - Prob. 10PPCCh. 6.6 - Prob. 6.6.1SRCh. 6.6 - Prob. 6.6.2SRCh. 6.6 - Prob. 6.6.3SRCh. 6.6 - Prob. 6.6.4SRCh. 6 - Prob. 6.1QPCh. 6 - Prob. 6.2QPCh. 6 - Prob. 6.3QPCh. 6 - Prob. 6.4QPCh. 6 - Prob. 6.5QPCh. 6 - Prob. 6.6QPCh. 6 - Prob. 6.7QPCh. 6 - Prob. 6.8QPCh. 6 - Prob. 6.9QPCh. 6 - Define electronegativity and explain the...Ch. 6 - Prob. 6.11QPCh. 6 - Prob. 6.12QPCh. 6 - Prob. 6.13QPCh. 6 - Prob. 6.14QPCh. 6 - Prob. 6.15QPCh. 6 - Prob. 6.16QPCh. 6 - Arrange the following bonds in order of increasing...Ch. 6 - Prob. 6.18QPCh. 6 - Prob. 6.19QPCh. 6 - Prob. 6.20QPCh. 6 - Prob. 6.21QPCh. 6 - Prob. 6.22QPCh. 6 - Prob. 6.23QPCh. 6 - Prob. 6.24QPCh. 6 - Prob. 6.25QPCh. 6 - Prob. 6.26QPCh. 6 - Prob. 6.27QPCh. 6 - Prob. 6.28QPCh. 6 - Prob. 6.29QPCh. 6 - Prob. 6.30QPCh. 6 - Prob. 6.31QPCh. 6 - Prob. 6.32QPCh. 6 - Prob. 6.33QPCh. 6 - Prob. 6.34QPCh. 6 - Draw all of the resonance structures for the...Ch. 6 - Prob. 6.36QPCh. 6 - Prob. 6.37QPCh. 6 - Draw three resonance structures for the molecule...Ch. 6 - Draw three reasonable resonance structures for the...Ch. 6 - Indicate which of the following are resonance...Ch. 6 - Prob. 6.41QPCh. 6 - Prob. 6.42QPCh. 6 - Draw a resonance structure of the guanine molecule...Ch. 6 - Prob. 6.44QPCh. 6 - Give three examples of compounds that do not...Ch. 6 - Prob. 6.46QPCh. 6 - Prob. 6.47QPCh. 6 - Prob. 6.48QPCh. 6 - Prob. 6.49QPCh. 6 - Prob. 6.50QPCh. 6 - Prob. 6.51QPCh. 6 - Prob. 6.52QPCh. 6 - Prob. 6.53QPCh. 6 - Draw Lewis structures for the radical species ClF2...Ch. 6 - Prob. 6.55QPCh. 6 - Prob. 6.56QPCh. 6 - Prob. 6.57QPCh. 6 - Prob. 6.58QPCh. 6 - Prob. 6.59QPCh. 6 - Prob. 6.60QPCh. 6 - Give an example of an ion or molecule containing...Ch. 6 - Prob. 6.62QPCh. 6 - Prob. 6.63QPCh. 6 - Prob. 6.64QPCh. 6 - Are the following statements true or false? (a)...Ch. 6 - Prob. 6.66QPCh. 6 - Prob. 6.67QPCh. 6 - Most organic acids can be represented as RCOOH,...Ch. 6 - Prob. 6.69QPCh. 6 - Prob. 6.70QPCh. 6 - Prob. 6.71QPCh. 6 - The following species have been detected in...Ch. 6 - Prob. 6.73QPCh. 6 - Prob. 6.74QPCh. 6 - The triiodide ion (I3) in which the I atoms are...Ch. 6 - Prob. 6.76QPCh. 6 - Prob. 6.77QPCh. 6 - The chlorine nitrate (ClONO2) molecule is believed...Ch. 6 - Prob. 6.79QPCh. 6 - For each of the following organic molecules draw a...Ch. 6 - Prob. 6.81QPCh. 6 - Draw Lewis structures for the following organic...Ch. 6 - Draw Lewis structures for the following four...Ch. 6 - Prob. 6.84QPCh. 6 - Prob. 6.85QPCh. 6 - Draw three resonance structures for (a) the...Ch. 6 - Prob. 6.87QPCh. 6 - Prob. 6.88QPCh. 6 - Prob. 6.89QPCh. 6 - Draw a Lewis structure for nitrogen pentoxide...Ch. 6 - Prob. 6.91QPCh. 6 - Nitrogen dioxide (NO2) is a stable compound....Ch. 6 - Prob. 6.93QPCh. 6 - Vinyl chloride (C2H3Cl) differs from ethylene...Ch. 6 - Prob. 6.95QPCh. 6 - Prob. 6.96QPCh. 6 - In 1999 an unusual cation containing only nitrogen...Ch. 6 - Prob. 6.98QPCh. 6 - Prob. 6.99QPCh. 6 - Electrostatic potential maps for three compounds...Ch. 6 - Which of the following atoms must always obey the...Ch. 6 - Prob. 6.2KSPCh. 6 - Prob. 6.3KSPCh. 6 - How many lone pairs are on the central atom in the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Consider the formate ion, HCO2", which is the anion formed when formic acid loses an H* ion. The H and the two O atoms are bonded to the central C atom. (a) Draw the best Lewis structure(s) for this ion. (b) Are resonance structures needed to describe the structure? Explain briefly (c) Would you predict that the C-O bond lengths in the formate ion would be longer or shorter relative to those in CO2? Explain brieflyarrow_forwardUse Lewis electron-dot symbols to represent the formationof (a) BrF₃ from bromine and fluorine atoms; (b) AlF₃ from alu-minum and fluorine atoms.arrow_forwardIn each case, tell whether the bond is ionic, polar cova- lent, or nonpolar covalent. (a) Br, (e) SiH, (d) SrF, (c) HCl (g) N, (b) BrCl 2 (f) CO (h) CsCl 4.arrow_forward
- Consider the following compounds: CaCl 2 , CaI 2 , and MgCl 2 . Answer the following questions based on expected periodic trends: (a) Which is expected to have t he shortest ionic bonds? (b) Which is expected to have the highest lattice energy? (c) Which is expected to have the lowest melting point?arrow_forwardGiven the following types of atoms, decide which type of bonding, ionic or covalent, is most likely to occur: (a) two oxygen atoms; (b) four hydrogen atoms and one carbon atom; (c) a potassium atom (3919 K) and a fluorine atom (19 9F).arrow_forwardAn ionic compound of formula XY2 (X = cation with two positive charges, Y = anion with one negative charge) has the following mass composition: Mg 10.9%, Cl 31.8%, O57.3%. (a) What is the chemical formula and name of the compound? (b) Give the most probable Lewis structure for the ions contained in the compound.arrow_forward
- 3. Use Lewis symbols to diagram the reactions between (a) Ca and Br, (b) Al and O, and (c) K and S.arrow_forwardConsider the Lewis Structure for the molecule, [BrCl4]. On your own, make a sketch of the VSEPR shape, and use that to answer the following questions: :Cl: :Cl,Br- -Br÷Cl:arrow_forwardKeeping in mind that some elements violate the octet rule, draw a Lewis structure for each compound: (a) BeH 2; (b) PCl 5.arrow_forward
- (a) The 03 molecule has a central oxygen atom bonded to two outer oxygen atoms that are another. In the box below, draw the Lewis electron-dot diagram of the 03 molecule. Include all valid resonance structures. 0 - 0 = 0 (b) Based on the diagram you drew in part (a), what is the shape of the ozone molecule? and trigonal Bent Ozone decomposes according to the reaction represented below. 2 03(g) → 3 0₂(8) (c) The bond enthalpy of the oxygen-oxygen bond in O₂ is 498 kJ/mol. Based on the enthalpy of the reaction represented above, what is the average bond enthalpy, in kJ/mol, of an oxygen-oxygen bond in 03 ? Ozone can oxidize HSO3(aq), as represented by the equation below. [0] 1.0 x 10-5. <-> 00: HSO3(aq) + O3(aq) → HSO4 (aq) + O₂(8) A solution is prepared in which the initial concentration of HSO₂ (aq) (6.4 × 10+ M) is much larger than that of O3(aq) (1.0 × 10-5 M). The concentration of O3(aq) is monitored as the reaction proceeds, and the data are plotted in the graph below. 8.0 x…arrow_forwardCalculate the enthalpy change for the following reactions using the bond enthalpy given below. (Bond enthalpy/kJ : H−H = 436, C−H = 413, C=O = 799, O=O = 495, O−H = 463) (a) H2(g) + 1⁄2O2(g) → H2O(g) (b) CH4(g) + 2O2(g) → CO2(g) + 2H2O(l)arrow_forwardDraw a valid Lewis structure for each ion: (a) OH −; (b) H 3O +.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Types of bonds; Author: Edspira;https://www.youtube.com/watch?v=Jj0V01Arebk;License: Standard YouTube License, CC-BY