
Chemistry: Atoms First
2nd Edition
ISBN: 9780073511184
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.5, Problem 7PPB
Interpretation Introduction
Interpretation:
The resonance structure of thiocyanate ion
Concept Introduction:
- Sometimes the chemical bonding of a molecule cannot be represented using a single Lewis structure. In these cases, the chemical bonding are described by delocalization of electrons and is known as resonance.
- In some molecules, there is possibility of more than one Lewis structure where all the structures are equally acceptable. One of the acceptable Lewis structures of these molecules is called resonance structure. All the possible resonance structures are imaginary whereas the resonance hybrid is real.
- These structures will differ only in the arrangement of the electrons not in the relative position of the atomic nuclei.
- While drawing resonance structure of a molecule some rules should be followed where the position, over whole charge and chemical framework remains intact. Also only π and nonbonding electron has been moved in all the three resonance structures
To draw: The resonance structure of the given molecule
Interpretation Introduction
Interpretation:
The formal charges of three resonance structures of thiocyanate ion
Concept Introduction
- A formal charge (FC) is the charge assigned to an atom in a molecule, irrespective of relative electronegativity by thinking that electrons in all
chemical bonds are shared equally among atoms. - This method is used to identify the most probable Lewis structures if more than one possibility exists for a compound.
- The Lewis structure with formal charge on each of the atoms close to zero is taken as the most plausible structure.
- Formal charge of an atom can be determined by the given formula.
To find: The formal charges of the resonance structures of thiocyanate ion
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).
Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).
What is the IUPAC name of the following compound?
CH₂CH₂
H
CI
H₂CH₂C
H
CH₂
Selected Answer:
O
(35,4R)-4 chloro-3-ethylpentane
Correct
Chapter 6 Solutions
Chemistry: Atoms First
Ch. 6.2 - Classify the following bonds as nonpolar, polar,...Ch. 6.2 - Classify the following bonds as nonpolar, polar,...Ch. 6.2 - Prob. 1PPBCh. 6.2 - Electrostatic potential maps are shown for HCl and...Ch. 6.2 - Prob. 6.2WECh. 6.2 - Prob. 2PPACh. 6.2 - Prob. 2PPBCh. 6.2 - Prob. 2PPCCh. 6.2 - Prob. 6.3WECh. 6.2 - Prob. 3PPA
Ch. 6.2 - Prob. 3PPBCh. 6.2 - Prob. 3PPCCh. 6.2 - Prob. 6.2.1SRCh. 6.2 - Prob. 6.2.2SRCh. 6.2 - Prob. 6.2.3SRCh. 6.2 - Prob. 6.2.4SRCh. 6.3 - Draw the Lewis structure for carbon disulfide...Ch. 6.3 - Prob. 4PPACh. 6.3 - Prob. 4PPBCh. 6.3 - Prob. 4PPCCh. 6.3 - Prob. 6.3.1SRCh. 6.3 - Prob. 6.3.2SRCh. 6.4 - The widespread use of fertilizers has resulted in...Ch. 6.4 - Prob. 5PPACh. 6.4 - Prob. 5PPBCh. 6.4 - Prob. 5PPCCh. 6.4 - Formaldehyde (CH2O), which can be used 10 preserve...Ch. 6.4 - Prob. 6PPACh. 6.4 - Prob. 6PPBCh. 6.4 - Prob. 6PPCCh. 6.4 - Prob. 6.4.1SRCh. 6.4 - Prob. 6.4.2SRCh. 6.5 - Prob. 6.7WECh. 6.5 - Prob. 7PPACh. 6.5 - Prob. 7PPBCh. 6.5 - Prob. 7PPCCh. 6.5 - Prob. 6.5.1SRCh. 6.5 - Prob. 6.5.2SRCh. 6.6 - Prob. 6.8WECh. 6.6 - Prob. 8PPACh. 6.6 - Prob. 8PPBCh. 6.6 - Prob. 8PPCCh. 6.6 - Prob. 6.9WECh. 6.6 - Prob. 9PPACh. 6.6 - Prob. 9PPBCh. 6.6 - Elements in the same group exhibit similar...Ch. 6.6 - Prob. 6.10WECh. 6.6 - Draw three resonance structures for the hydrogen...Ch. 6.6 - Draw two resonance structures for each speciesone...Ch. 6.6 - Prob. 10PPCCh. 6.6 - Prob. 6.6.1SRCh. 6.6 - Prob. 6.6.2SRCh. 6.6 - Prob. 6.6.3SRCh. 6.6 - Prob. 6.6.4SRCh. 6 - Prob. 6.1QPCh. 6 - Prob. 6.2QPCh. 6 - Prob. 6.3QPCh. 6 - Prob. 6.4QPCh. 6 - Prob. 6.5QPCh. 6 - Prob. 6.6QPCh. 6 - Prob. 6.7QPCh. 6 - Prob. 6.8QPCh. 6 - Prob. 6.9QPCh. 6 - Define electronegativity and explain the...Ch. 6 - Prob. 6.11QPCh. 6 - Prob. 6.12QPCh. 6 - Prob. 6.13QPCh. 6 - Prob. 6.14QPCh. 6 - Prob. 6.15QPCh. 6 - Prob. 6.16QPCh. 6 - Arrange the following bonds in order of increasing...Ch. 6 - Prob. 6.18QPCh. 6 - Prob. 6.19QPCh. 6 - Prob. 6.20QPCh. 6 - Prob. 6.21QPCh. 6 - Prob. 6.22QPCh. 6 - Prob. 6.23QPCh. 6 - Prob. 6.24QPCh. 6 - Prob. 6.25QPCh. 6 - Prob. 6.26QPCh. 6 - Prob. 6.27QPCh. 6 - Prob. 6.28QPCh. 6 - Prob. 6.29QPCh. 6 - Prob. 6.30QPCh. 6 - Prob. 6.31QPCh. 6 - Prob. 6.32QPCh. 6 - Prob. 6.33QPCh. 6 - Prob. 6.34QPCh. 6 - Draw all of the resonance structures for the...Ch. 6 - Prob. 6.36QPCh. 6 - Prob. 6.37QPCh. 6 - Draw three resonance structures for the molecule...Ch. 6 - Draw three reasonable resonance structures for the...Ch. 6 - Indicate which of the following are resonance...Ch. 6 - Prob. 6.41QPCh. 6 - Prob. 6.42QPCh. 6 - Draw a resonance structure of the guanine molecule...Ch. 6 - Prob. 6.44QPCh. 6 - Give three examples of compounds that do not...Ch. 6 - Prob. 6.46QPCh. 6 - Prob. 6.47QPCh. 6 - Prob. 6.48QPCh. 6 - Prob. 6.49QPCh. 6 - Prob. 6.50QPCh. 6 - Prob. 6.51QPCh. 6 - Prob. 6.52QPCh. 6 - Prob. 6.53QPCh. 6 - Draw Lewis structures for the radical species ClF2...Ch. 6 - Prob. 6.55QPCh. 6 - Prob. 6.56QPCh. 6 - Prob. 6.57QPCh. 6 - Prob. 6.58QPCh. 6 - Prob. 6.59QPCh. 6 - Prob. 6.60QPCh. 6 - Give an example of an ion or molecule containing...Ch. 6 - Prob. 6.62QPCh. 6 - Prob. 6.63QPCh. 6 - Prob. 6.64QPCh. 6 - Are the following statements true or false? (a)...Ch. 6 - Prob. 6.66QPCh. 6 - Prob. 6.67QPCh. 6 - Most organic acids can be represented as RCOOH,...Ch. 6 - Prob. 6.69QPCh. 6 - Prob. 6.70QPCh. 6 - Prob. 6.71QPCh. 6 - The following species have been detected in...Ch. 6 - Prob. 6.73QPCh. 6 - Prob. 6.74QPCh. 6 - The triiodide ion (I3) in which the I atoms are...Ch. 6 - Prob. 6.76QPCh. 6 - Prob. 6.77QPCh. 6 - The chlorine nitrate (ClONO2) molecule is believed...Ch. 6 - Prob. 6.79QPCh. 6 - For each of the following organic molecules draw a...Ch. 6 - Prob. 6.81QPCh. 6 - Draw Lewis structures for the following organic...Ch. 6 - Draw Lewis structures for the following four...Ch. 6 - Prob. 6.84QPCh. 6 - Prob. 6.85QPCh. 6 - Draw three resonance structures for (a) the...Ch. 6 - Prob. 6.87QPCh. 6 - Prob. 6.88QPCh. 6 - Prob. 6.89QPCh. 6 - Draw a Lewis structure for nitrogen pentoxide...Ch. 6 - Prob. 6.91QPCh. 6 - Nitrogen dioxide (NO2) is a stable compound....Ch. 6 - Prob. 6.93QPCh. 6 - Vinyl chloride (C2H3Cl) differs from ethylene...Ch. 6 - Prob. 6.95QPCh. 6 - Prob. 6.96QPCh. 6 - In 1999 an unusual cation containing only nitrogen...Ch. 6 - Prob. 6.98QPCh. 6 - Prob. 6.99QPCh. 6 - Electrostatic potential maps for three compounds...Ch. 6 - Which of the following atoms must always obey the...Ch. 6 - Prob. 6.2KSPCh. 6 - Prob. 6.3KSPCh. 6 - How many lone pairs are on the central atom in the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forwardLook at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forward
- Given 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- Concentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forwardExplain why the following names of the structures are incorrect. CH2CH3 CH3-C=CH-CH2-CH3 a. 2-ethyl-2-pentene CH3 | CH3-CH-CH2-CH=CH2 b. 2-methyl-4-pentenearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning

Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY