Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 6.55E
Interpretation Introduction
Interpretation:
The reason as why it is impossible to get a mathematical solution for a single-component system containing four phases in equilibrium is to be stated.
Concept introduction:
The chemical potential is the energy absorbed or released in a
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
2. In a non-ideal binary mixture of A and B, the chemical potential of A is
(a) The partial derivative of the total Gibbs free energy, with respect to the
number of moles of A.
(b) The partial derivative of the Gibbs free energy of A, with respect to the
number of moles of A.
(c) The partial derivative of the Gibbs free energy of B, with respect to the
number of moles of A.
(d) The total Gibbs free energy, divided by the number of moles of A.
(e) The Gibbs free energy of A, divided by the number of moles of A.
How much energy (at constant temperature and pressure) must be supplied as heat to 10.0 g of chlorine gas (as Cl2) to produce a plasma composed of Cl- and Cl+ ions? The enthalpy of ionization of Cl(g) is +12575 kJ mol-1 and its electron gain enthalpy is -349 kJ mol-1. Hence identify the standardenthalpy of ionization of Cl- (g).
(b)
Consider the dissociation of molecular chlorine, with an equilibrium constant K =
0.44, at a certain temperature and a pressure of 1.00 bar, described by the
following chemical equilibrium reaction:
Cl2(g) = 2 Cl(g),
Calculate the following:
(i) The dissociation temperature (in Kelvins) of molecular chlorine, given that the
standard Gibbs free energy change of the reaction is AG = 19 kJ mol-1.
(ii) The degree of dissociation (a) of molecular chlorine
(iii) If the equilibrium constant at a higher temperature of 3455 K is K = 3.00, calculate
AH, assuming A.He to be constant up to this temperature range.
(iv) Calculate A-GⓇ and A.SⓇ at a temperature of 3455 K.
(v) Describe the position of equilibrium based on question (iv) above on the value of
AGº.
Chapter 6 Solutions
Physical Chemistry
Ch. 6 - Prob. 6.1ECh. 6 - Prob. 6.2ECh. 6 - Prob. 6.3ECh. 6 - Prob. 6.4ECh. 6 - Prob. 6.5ECh. 6 - Prob. 6.6ECh. 6 - Prob. 6.7ECh. 6 - Prob. 6.8ECh. 6 - 6.9. Identify and explain the sign on in equation...Ch. 6 - 6.10. Use Hess’s law to prove that .
Ch. 6 - 6.11. Calculate the amount of heat necessary to...Ch. 6 - Prob. 6.12ECh. 6 - Assume that the vapH of an evaporating liquid...Ch. 6 - 6.14. As a follow-up to the previous exercise,...Ch. 6 - Prob. 6.15ECh. 6 - 6.16. What is for isothermal conversion of liquid...Ch. 6 -
6.17. Estimate the melting point of nickel, Ni,...Ch. 6 -
6.18. Estimate the boiling point of platinum, Pt,...Ch. 6 - Prob. 6.19ECh. 6 - Prob. 6.20ECh. 6 - 6.21. What assumption is used in the integration...Ch. 6 - Prob. 6.22ECh. 6 - Sulfur, in its cyclic molecular form having the...Ch. 6 - Prob. 6.24ECh. 6 - 6.25. Phosphorus exists as several allotropes that...Ch. 6 - Prob. 6.26ECh. 6 - 6.27. What is higher for a substance: its normal...Ch. 6 - 6.28. Elemental gallium is another substance whose...Ch. 6 - Prob. 6.29ECh. 6 - Consider the sulfur solid-state phase transition...Ch. 6 - 6.31. If it takes mega bars of pressure to change...Ch. 6 - Prob. 6.32ECh. 6 - Four alcohols have the formula C4H9OH: 1-butanol,...Ch. 6 - Prob. 6.34ECh. 6 - At 20.0C, the vapor pressure of ethanol is...Ch. 6 - Prob. 6.36ECh. 6 - Prob. 6.37ECh. 6 - Ethanol has a density of 0.789g/cm3 and a vapor...Ch. 6 - Prob. 6.39ECh. 6 - Prob. 6.40ECh. 6 - Prob. 6.41ECh. 6 - 6.42. At what pressure does the boiling point of...Ch. 6 - Prob. 6.43ECh. 6 - Prob. 6.44ECh. 6 - Prob. 6.45ECh. 6 - Prob. 6.46ECh. 6 - Prob. 6.47ECh. 6 - 6.48. Explain how glaciers, huge masses of solid...Ch. 6 - Prob. 6.49ECh. 6 - Prob. 6.50ECh. 6 - Prob. 6.51ECh. 6 - Prob. 6.52ECh. 6 - Prob. 6.53ECh. 6 - Prob. 6.54ECh. 6 - Prob. 6.55ECh. 6 - Prob. 6.56ECh. 6 - Prob. 6.57ECh. 6 - Use the phase diagram of water in Figure 6.6 and...Ch. 6 - Prob. 6.59ECh. 6 - Prob. 6.60ECh. 6 - At the triple point of a substance, the vapor...Ch. 6 - Prob. 6.62ECh. 6 - Prob. 6.63ECh. 6 - Prob. 6.64ECh. 6 - Prob. 6.65ECh. 6 - Prob. 6.66ECh. 6 - The phase diagram for elemental sulfur is shown in...Ch. 6 - Consider the phase diagram of sulfur in the...Ch. 6 - Prob. 6.69ECh. 6 - Rearrange the Clausius-Clapeyron equation,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Determine the standard Gibbs free energy change, rG, for the reactions of liquid methanol, of CO(g), and ofethyne, C2H2(g), with oxygen gas to form gaseous carbondioxide and (if hydrogen is present) liquid water at298 K. Use your calculations to decide which of thesesubstances are kinetically stable and which are thermodynamically stable: CH3OH(), CO(g), C2H9(g), CO2(g),H2O().arrow_forwardCalculate the standard Gibbs free-energy change when SO3 forms from SO2 and O2 at 298 K. Why is sulfur trioxide an important substance to study? (Hint: What happens when it combines with water?)arrow_forwardWhat is the sign of the standard Gibbs free-energy change at low temperatures and at high temperatures for the explosive decomposition of TNT? Use your knowledge of TNT and the chemical equation, particularly the phases, to answer this question. (Thermodynamic data for TNT are not in Appendix G.) 2C7H5N3O6(s) 3N2(g) + 5H2O() + 7C(s) + 7CO(g)arrow_forward
- Billions of pounds of acetic acid are made each year, much of it by the reaction of methanol with carbon monoxide. (AssumeT= 298 K.) CH3OH() + CO(g) CH3COOH() (a) By calculating the standard Gibbs free energy change, rG, for this reaction, show that it is product-favored. (b) Determine the standard Gibbs free energy change, rG,for the reaction of acetic acid with oxygen to form gaseous carbon dioxide and liquid water. (c) Based on this result, is acetic acid thermodynamicallystable compared with CO2(g) and H2O()? (d) Is acetic acid kinetically stable compared with CO2(g)and H2O()?arrow_forwardWould the amount of heat absorbed by the dissolution in Example 5.6 appear greater, lesser, or remain the same if the heat capacity of the calorimeter were taken into account? Explain your answer.arrow_forwardCalculate the standard Gibbs free energy change, ∆Gorxn, for the following reaction at 25.0oC: Ca3(PO4)2(s) → 3Ca2+(aq) + 2PO43– (aq), Ksp = 2.07×10–33 Calculate it with correct units and significant figures.arrow_forward
- Gibbs free energy (G�) is a measure of the spontaneity of a chemical reaction. It is the chemical potential for a reaction, and is minimized at equilibrium. It is defined as G=H−TS�=�−�� where H� is enthalpy, T� is temperature, and S� is entropy. The chemical reaction that causes magnesium to corrode in air is given by 2Mg+O2→2MgO2Mg+O2→2MgO in which at 298 K, ΔH∘rxn = −1204 kJΔ�rxn∘ = −1204 kJ and ΔS∘rxn = −217.1 J/KΔ�rxn∘ = −217.1 J/K. Part A Part complete What is the standard Gibbs free energy for this reaction? Assume the commonly used standard reference temperature of 298 K. Part B What is the Gibbs free energy for this reaction at 5958 KK ? Assume that ΔHΔ� and ΔSΔ� do not change with temperature. Express your answer to two decimal places and include the appropriate units. Part C At what temperature Teq�eq do the forward and reverse corrosion reactions occur in equilibrium? Express your answer as an integer and include the appropriate units.arrow_forwardG.202.arrow_forwardHydrogen gas burns in an atmosphere of bromine gas to produce hydrogen bromide gas according to the chemical reaction H, (g) + Br, (g) → 2 HBr(g) Calculate the standard Gibbs free energy of the reaction. Refer to the list of thermodynamic values. AGixn = kJ-mol-! Suppose 130.0 mL of hydrogen gas at STP combines with a stoichiometric amount of bromine gas and the resulting hydrogen bromide dissolves in water to form 185.0 mL of an aqueous solution. What is the concentration of the resulting hydrobromic acid? concentration: Marrow_forward
- What is the standard Gibbs free energy for this reaction? Assume the commonly used standard reference temperature of 298 K. Express your answer as an integer and include the appropriate units. ► View Available Hint(s) Submit AGixn = 6.24. 10¹¹ Part B AGrxn= xa Submit Part C μÅ Xb b Teq = Previous Answers X Incorrect; Try Again; 5 attempts remaining Enter your answer with a different unit type. Review a list of acceptable units. What is the Gibbs free energy for this reaction at 5975 K ? Assume that AH and AS do not change with temperature. Express your answer to two decimal places and include the appropriate units. ► View Available Hint(s) Value μА Value . μA X.10n J K X Units At what temperature Teq do the forward and reverse corrosion reactions occur in equilibrium? Express your answer as an integer and include the appropriate units. ► View Available Hint(s) Units ? ?arrow_forwardFor the oxidation of iron to form iron(III) oxide: 4Fe(s) + 3O2(g) ⟷⟷ 2Fe2O3(s) ΔSo = –549.73 J∙K–1 at 298 K. The enthalpy of formation of Fe2O3(s) is –824.2 kJ∙mol–1. What is the standard change in Gibbs free energy for this reaction at 298 K? A)-660 kJ B)-1,485 kJ C)-988 kJ D)-1,812 kJarrow_forwardFor a certain chemical reaction, the equilibrium constant K = ×7.7106 at 5.00 °C . Calculate the standard Gibbs free energy of reaction.Round your answer to 2 significant digits.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY