
Concept explainers
(a)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(a)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is valid for the sublimation ice in your freezer.
Explanation of Solution
Sublimation is a process in which the substance in a solid state is directly converted into a vapor state without going through the liquid state. The sublimation of ice consists of a gas phase and is at a normal pressure. Therefore, the Clausius-Clapeyron equation is valid.
Yes, the Clausius-Clapeyron equation is applicable to the given phase transition.
(b)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(b)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is valid for the condensation of steam into water.
Explanation of Solution
Condensation is defined as the phase change from the gaseous phase to the liquid phase. The condensation of steam involves a gas phase and at extreme pressure, it is not specified. Therefore, the Clausius-Clapeyron equation is valid.
Yes, the Clausius-Clapeyron equation is applicable to the given phase transition.
(c)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(c)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is not valid for the freezing of cyclohexane at
Explanation of Solution
Freezing of cyclohexane at
No, the Clausius-Clapeyron equation is not valid to the given phase transition.
(d)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(d)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is not valid for the conversion of ice V to ice VI.
Explanation of Solution
The conversion of ice V to ice VI takes place at a pressure greater than
No, the Clausius-Clapeyron equation is not valid to the given phase transition.
(e)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(e)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is not valid for the conversion of diatomic oxygen,
Explanation of Solution
The conversion of diatomic oxygen,
No, the Clausius-Clapeyron equation is not valid to the given phase transition.
(f)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(f)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is not valid for the formation of diamonds under pressure.
Explanation of Solution
The formation of diamonds takes place under a high pressure that does not involve the gas phase. Therefore, the assumption of ideal gas behaviour fails. Hence, the Clausius-Clapeyron equation is not valid.
No, the Clausius-Clapeyron equation is not valid to the given phase transition.
(g)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(g)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is not valid for the formation of metallic solid hydrogen,
Explanation of Solution
The formation of metallic solid hydrogen,
No, the Clausius-Clapeyron equation is not valid to the given phase transition.
(h)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(h)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is valid for the evaporation of mercury liquid,
Explanation of Solution
The evaporation of mercury liquid,
Yes, the Clausius-Clapeyron equation is applicable to the given phase transition.
Want to see more full solutions like this?
Chapter 6 Solutions
Physical Chemistry
- please help fill in the tablearrow_forwardAnswer F pleasearrow_forward4. Refer to the data below to answer the following questions: The octapeptide saralasin is a specific antagonist of angiotensin II. A derivative of saralasin is used therapeutically as an antihypertensive. Amino acid analysis of saralasin show the presence of the following amino acids: Ala, Arg, His, Pro, Sar, Tyr, Val, Val A.Sar is the abbreviation for sarcosine, N-methyl aminoethanoic acid. Draw the structure of sarcosine. B. N-Terminal analysis by the Edman method shows saralasin contains sarcosine at the N-terminus. Partial hydrolysis of saralasin with dilute hydrochloric acid yields the following fragments: Tyr-Val-His Sar-Arg-Val His-Pro-Ala Val-Tyr-Val Arg-Val-Tyr What is the structure of saralasin?arrow_forward
- What is the structure of the DNA backbone?arrow_forwardPLEASE PLEASE PLEASE use hand drawn structures when possarrow_forward. M 1- MATCH each of the following terms to a structure from the list below. There is only one correct structure for each term and structures may be used more than once. Place the letter of the structure in the blank to the left of the corresponding term. A. Sanger dideoxy method C. Watson-Crick B. GAUCGUAAA D. translation E. HOH2C OH OH G. transcription I. AUGGCUGAG 0 K. OPOH2C 0- OH N- H NH2 F. -OPOH2C 0- OH OH H. Maxam-Gilbert method J. replication N L. HOH2C a. b. C. d. e. f. g. B M. AGATCGCTC a pyrimidine nucleoside RNA base sequence with guanine at the 3' end. DNA base sequence with cytosine at the 3' end. a purine nucleoside DNA sequencing method for the human genome 2'-deoxyadenosine 5'-phosphate process by which mRNA directs protein synthesis OH NH2arrow_forward
- Please use hand drawn structures when neededarrow_forwardB. Classify the following amino acid. Atoms other than carbon and hydrogen are labeled. a. acidic b. basic C. neutral C. Consider the following image. Which level of protein structure is shown here? a. primary b. secondary c. tertiary d. quaternary D. Consider the following image. H RH H HR H R HR HR RH Which level of protein structure is shown in the box? a. primary b. secondary R c. tertiary d. quaternary コー Rarrow_forwardBriefly answer three from the followings: a. What are the four structures of the protein? b. Why is the side chain (R) attached to the alpha carbon in the amino acids is important for the function? c. What are the types of amino acids? And how is it depend on the (R) structure? d. Write a reaction to prepare an amino acid. prodarrow_forward
- Answe Answer A and B pleasearrow_forward3. Refer to the data below to answer the following questions: Isoelectric point Amino Acid Arginine 10.76 Glutamic Acid 3.22 Tryptophan 5.89 A. Define isoelectric point. B. The most basic amino acid is C. The most acidic amino acid is sidizo zoarrow_forward3. A gas mixture contains 50 mol% H2 and 50 mol% He. 1.00-L samples of this gas mixture are mixed with variable volumes of O2 (at 0 °C and 1 atm). A spark is introduced to allow the mixture to undergo complete combustion. The final volume is measured at 0 °C and 1 atm. Which graph best depicts the final volume as a function of the volume of added O2? (A) 2.00 1.75 Final Volume, L 1.50 1.25 1.00 0.75 0.50 0.25 0.00 0.00 0.25 0.50 2.00 (B) 1.75 1.50 Final Volume, L 1.25 1.00 0.75 0.50- 0.25 0.00 0.75 1.00 0.00 0.25 Volume O₂ added, L 2 0.50 0.75 1.00 Volume O₂ added, L 2 2.00 2.00 (C) (D) 1.75 1.75 1.50 1.50 Final Volume, L 1.25 1.00 0.75 0.50 Final Volume, L 1.25 1.00 0.75 0.50 0.25 0.25 0.00 0.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 Volume O₂ added, L 0.50 0.75 1.00 Volume O₂ added, L 2arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning


