
Concept explainers
(a)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(a)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is valid for the sublimation ice in your freezer.
Explanation of Solution
Sublimation is a process in which the substance in a solid state is directly converted into a vapor state without going through the liquid state. The sublimation of ice consists of a gas phase and is at a normal pressure. Therefore, the Clausius-Clapeyron equation is valid.
Yes, the Clausius-Clapeyron equation is applicable to the given phase transition.
(b)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(b)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is valid for the condensation of steam into water.
Explanation of Solution
Condensation is defined as the phase change from the gaseous phase to the liquid phase. The condensation of steam involves a gas phase and at extreme pressure, it is not specified. Therefore, the Clausius-Clapeyron equation is valid.
Yes, the Clausius-Clapeyron equation is applicable to the given phase transition.
(c)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(c)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is not valid for the freezing of cyclohexane at
Explanation of Solution
Freezing of cyclohexane at
No, the Clausius-Clapeyron equation is not valid to the given phase transition.
(d)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(d)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is not valid for the conversion of ice V to ice VI.
Explanation of Solution
The conversion of ice V to ice VI takes place at a pressure greater than
No, the Clausius-Clapeyron equation is not valid to the given phase transition.
(e)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(e)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is not valid for the conversion of diatomic oxygen,
Explanation of Solution
The conversion of diatomic oxygen,
No, the Clausius-Clapeyron equation is not valid to the given phase transition.
(f)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(f)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is not valid for the formation of diamonds under pressure.
Explanation of Solution
The formation of diamonds takes place under a high pressure that does not involve the gas phase. Therefore, the assumption of ideal gas behaviour fails. Hence, the Clausius-Clapeyron equation is not valid.
No, the Clausius-Clapeyron equation is not valid to the given phase transition.
(g)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(g)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is not valid for the formation of metallic solid hydrogen,
Explanation of Solution
The formation of metallic solid hydrogen,
No, the Clausius-Clapeyron equation is not valid to the given phase transition.
(h)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(h)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is valid for the evaporation of mercury liquid,
Explanation of Solution
The evaporation of mercury liquid,
Yes, the Clausius-Clapeyron equation is applicable to the given phase transition.
Want to see more full solutions like this?
Chapter 6 Solutions
Physical Chemistry
- Would the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forward(a) Sketch the 'H NMR of the following chemical including the approximate chemical shifts, the multiplicity (splitting) of all signals and the integration (b) How many signals would you expect in the 13C NMR? CH3arrow_forwardDraw the Show the major and minor product(s) for the following reaction mechanisms for both reactions and show all resonance structures for any Explain why the major product is favoured? intermediates H-Brarrow_forward
- 3. Draw ALL THE POSSBILE PRODUCTS AND THE MECHANISMS WITH ALL RESONANCE STRUCTURES. Explain using the resonance structures why the major product(s) are formed over the minor product(s). H₂SO4, HONO CHarrow_forward7. Provide the product(s), starting material(s) and/or condition(s) required for the No mechanisms required. below reaction HO + H-I CI FO Br2, FeBr3 O I-Oarrow_forward6. Design the most efficient synthesis of the following product starting from phenot Provide the reaction conditions for each step (more than one step is required) and explain the selectivity of each reaction. NO MECHANISMS ARE REQUIRED. OH step(s) CIarrow_forward
- What is the skeletal structure of the product of the following organic reaction?arrow_forwardIf a reaction occurs, what would be the major products? Please include a detailed explanation as well as a drawing showing how the reaction occurs and what the final product is.arrow_forwardWhat is the major organic product of the following nucleophilic acyl substitution reaction of an acid chloride below?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning


