Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 6.2QQ
A bead slides at constant speed along a curved wire lying on a horizontal surface as shown in Figure 6.8. (a) Draw the vectors representing the force exerted by the wire on the bead at points Ⓐ, Ⓑ,and Ⓒ. (b) Suppose the bead in Figure 6.8 speeds up with constant tangential acceleration as it moves toward the right. Draw the vectors representing the forces on the bead at points Ⓐ, Ⓑ,and Ⓒ.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A man pushes a m = 3.20 kg block a distance d = 7.40 m along the floor by a constant force of magnitude F = 16.0 N directed at an angle ? = 20.0° below the horizontal as shown in the figure. Assume the floor is frictionless. (Enter your answers in joules.)
Two blocks are on a horizontal surface with their centers separated by a distance d. The block on the left is labeled m. An arrow points downward and to the right toward the left block. The arrow makes an angle of ? with the horizontal.
(a)Determine the work done on the block by the applied force (the force on the block exerted by the man).
(b)Determine the work done on the block by the normal force exerted by the floor.
(c)Determine the work done on the block by the gravitational force.
(d)Determine the work done by the net force on the block.
A dancer is standing on one leg on a drawbridge that is about to open. The coefficients of static and kinetic friction between the drawbridge and the dancer's foot are μs and μk, respectively. n⃗ represents the normal force exerted on the dancer by the bridge, and F⃗g represents the gravitational force exerted on the dancer, as shown in the drawing.(Figure 1). For all the questions, we can assume that the bridge is a perfectly flat surface and lacks the curvature characteristic of most bridges.
Before the drawbridge starts to open, it is perfectly level with the ground. The dancer is standing still on one leg. What is the horizontal component of the friction force f⃗? (Express your answer in terms of some or all of the variables n, μs, and/or μk.)
(Figure 2). The drawbridge then starts to rise. The dancer continues to stand on one leg. The drawbridge stops just at the point where the dancer is on the verge of slipping. What is the magnitude f of the frictional force now? (Express…
Problem 10 : A cord connected at one end to a block which can slide on an inclined plane has its other end wrapped around a cylinder resting in a depression at the top of the plane as shown in (Figure 1).
Part A
Determine the speed of the block after it has traveled 1.30 m along the plane, starting from rest. Assume there is no friction.
Express your answer using two significant figures.
Part B
Determine the speed of the block after it has traveled 1.30 m along the plane, starting from rest. Assume the coefficient of friction between all surfaces is μ = 0.0280. Since the block is much lighter than the cylinder, ignore tension in the string when calculating the normal force on the cylinder.
Do not ignore tension in the string when calculating the net torque (including friction) on the cylinder.
Chapter 6 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 6 - You are riding on a Ferris wheel that is rotating...Ch. 6 - A bead slides at constant speed along a curved...Ch. 6 - Consider the passenger in the car making a left...Ch. 6 - A basketball and a 2-inch-diameter steel ball,...Ch. 6 - A child is practicing for a BMX race. His speed...Ch. 6 - Consider a skydive r who has stepped from a...Ch. 6 - A door in a hospital has a pneumatic closer that...Ch. 6 - A pendulum consists of a small object called a bob...Ch. 6 - As a raindrop falls through the atmosphere, its...Ch. 6 - An office door is given a sharp push and swings...
Ch. 6 - Before takeoff on an airplane, an inquisitive...Ch. 6 - What forces cause (a) an automobile, (b) a...Ch. 6 - A falling skydiver reaches terminal speed with her...Ch. 6 - An object executes circular motion with constant...Ch. 6 - Describe the path of a moving body in the event...Ch. 6 - The observer in the accelerating elevator of...Ch. 6 - Prob. 6.6CQCh. 6 - It has been suggested dial rotating cylinders...Ch. 6 - Consider a small raindrop and a large raindrop...Ch. 6 - Why does a pilot lend to black out when pulling...Ch. 6 - Prob. 6.10CQCh. 6 - If the current position and velocity of every...Ch. 6 - A light string can support a stationary hanging...Ch. 6 - Whenever two Apollo astronauts were on the surface...Ch. 6 - In the Bohr model of the hydrogen atom, an...Ch. 6 - A curve in a road forms part of a horizontal...Ch. 6 - In a cyclotron (one type of particle accelerator),...Ch. 6 - A car initially traveling eastward turns north by...Ch. 6 - A space station, in the form of a wheel 120 m in...Ch. 6 - Consider a conical pendulum (Fig. P6.8) with a bob...Ch. 6 - A coin placed 30.0 cm from the center of a...Ch. 6 - Why is the following situation impossible? The...Ch. 6 - A crate of eggs is located in the middle of the...Ch. 6 - A pail of water is rotated in a vertical circle of...Ch. 6 - A hawk flies in a horizontal arc of radius 12.0 m...Ch. 6 - A 40.0-kg child swings in a swing supported by two...Ch. 6 - A child of mass m swings in a swing supported by...Ch. 6 - A roller-coaster car (Fig. P6.16) has a mass of...Ch. 6 - A roller coaster at the Six Flags Great America...Ch. 6 - One end of a cord is fixed and a small 0.500-kg...Ch. 6 - Prob. 6.19PCh. 6 - An object of mass m = 5.00 kg, attached to a...Ch. 6 - All object of mass m = 500 kg is suspended from...Ch. 6 - A child lying on her back experiences 55.0 N...Ch. 6 - A person stands on a scale in an elevator. As the...Ch. 6 - Review. A student, along with her backpack on the...Ch. 6 - A small container of water is placed on a...Ch. 6 - Review. (a) Estimate the terminal speed of a...Ch. 6 - The mass of a sports car is 1 200 kg. The shape of...Ch. 6 - A skydiver of mass 80.0 kg jumps from a...Ch. 6 - Calculate the force required to pull a copper ball...Ch. 6 - A small piece of Styrofoam packing material is...Ch. 6 - Prob. 6.31PCh. 6 - Prob. 6.32PCh. 6 - Assume the resistive force acting on a speed...Ch. 6 - Review. A window washer pulls a rubber squeegee...Ch. 6 - A motorboat cuts its engine when its speed is 10.0...Ch. 6 - You can feel a force of air drag on your hand if...Ch. 6 - A car travels clockwise at constant speed around a...Ch. 6 - The mass of a roller-coaster car, including its...Ch. 6 - A string under a tension of 50.0 N is used to...Ch. 6 - Disturbed by speeding cars outside his workplace,...Ch. 6 - A car of mass m passes over a hump in a road that...Ch. 6 - A childs toy consists of a small wedge that has an...Ch. 6 - A seaplane of total mass m lands on a lake with...Ch. 6 - An object of mass m1 = 4.00 kg is tied to an...Ch. 6 - A ball of mass m = 0.275 kg swings in a vertical...Ch. 6 - Why is the following situation impossible? A...Ch. 6 - (a) A luggage carousel at an airport has the form...Ch. 6 - In a home laundry dryer, a cylindrical tub...Ch. 6 - Prob. 6.49APCh. 6 - A basin surrounding a drain has the shape of a...Ch. 6 - A truck is moving with constant acceleration a up...Ch. 6 - The pilot of an airplane executes a loop-the-loop...Ch. 6 - Review. While learning to drive, you arc in a 1...Ch. 6 - A puck of mass m1 is tied to a string and allowed...Ch. 6 - Because the Earth rotates about its axis, a point...Ch. 6 - Galileo thought about whether acceleration should...Ch. 6 - Figure P6.57 shows a photo of a swing a ride at an...Ch. 6 - Review. A piece of putty is initially located at...Ch. 6 - An amusement park ride consists of a large...Ch. 6 - Members of a skydiving club were given the...Ch. 6 - A car rounds a banked curve as discussed in...Ch. 6 - In Example 6.5, we investigated the forces a child...Ch. 6 - A model airplane of mass 0.750 kg flies with a...Ch. 6 - A student builds and calibrates an accelerometer...Ch. 6 - A 9.00-kg object starting from rest falls through...Ch. 6 - For t 0, an object of mass m experiences no force...Ch. 6 - A golfer tees off from a location precisely at i =...Ch. 6 - A single bead can slide with negligible friction...Ch. 6 - Prob. 6.69CPCh. 6 - Because of the Earths rotation, a plumb bob does...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- To get a toolbox up an inclined slope, a student installs a pulley system as in the picture shown. The student uses their body weight to apply a force. The student weighs 81.9kg, and the toolbox weighs 16.3kg. The angle of the slope is 31.2° above the horizontal. The coefficient of friction between the box and the slope is 0.227. Once the student gets the box moving, what will its acceleration be? Activate Windowsarrow_forwardSketch what the problem is asking for.arrow_forwardThe slope of the 5.0 KN force F is specified as shown in the figure. Express F as a vector in terms of the unit vectors i and j. Assume a = 13, b = 6. Answer: F = ( F b i+ j) KNarrow_forward
- A 1,380-N crate is being pushed across a level floor at a constant speed by a force of 390 N at an angle of 20.0° below the horizontal. Two figures show a side view of a crate positioned upon a horizontal surface. Figure (a): An arrow pointing downward and to the right is labeled vector F and forms an angle of 20° below the horizontal as it approaches the upper left edge of the crate. Figure (b): An arrow pointing upward and to the right is labeled vector F and forms an angle of 20° above the horizontal as it extends from the upper right edge of the crate. (a) What is the coefficient of kinetic friction between the crate and the floor? (b) If the 390-N force is instead pulling the block at an angle of 20.0° above the horizontal, as shown in the figure b, what will be the acceleration of the crate? Assume that the coefficient of friction is the same as that found in part (a).arrow_forwardShown to the right is a block of mass m resting on a frictionless ramp inclined at an angle to the horizontal. The block is held by a spring that is stretched a distance d after the block is attached to it. E k= e wwwwww ▷ A Write an equation for the force constant of the spring in terms of the variables from the problem statement (m, 0, and d). Use g for the gravitational constant.arrow_forwardTo determine Cartesian force components from the magnitude and determine the position and resultant vectors by summing Cartesian components. As shown, a 3.1-lb ball is suspended at point D inside a box with dimensions w=9.50 ft, d=6.70 ft, and h=4.10 ft. The ball is held in place by three cables anchored at points A, B, and C on the surface of the box. If point D is the origin of the Cartesian coordinate system, point A is located at (−4.60,−3.50,2.50) ft, point B is located at (2.10,−3.50,1.90) ft, and point C is located at (2.10,6.00,−1.60) ft. 1) The tension in cable DA has a magnitude of TDA=7.66 lb. Find the Cartesian components of tension TDA, which is directed from D to A. so TDA=? 2)If the tensions in cables DA and DB are TDA=7.66 lb and TDB=5.56 lb, respectively, what is the tension in cable DC? so TDC=?arrow_forward
- A spring is attached at one end to support B and at the other end to collar A ,as represented in the figure. Collar A slides along the vertical bar between points C and D. In the figure, the angle 0 is the angle created as the collar moves between points C and D. When 0=28 degrees what is the distance from point A to point B to the nearest tenth of a foot? D 3 ft B A Carrow_forwardA movie stunt performer is filming a scene where he swings across a river on a vine. The safety crew must use a vine with enough strength so that it doesn't break while swinging. The stunt performer's mass is 88.0 kg, the vine is 10.5 m long, and the speed of the stunt performer at the bottom of the swing has been determined to be 8.80 m/s. What is the minimum tension force (in N) the vine must be able to support without breaking? N=arrow_forwardA child who weighs 300 N is swinging on a rope. At the highest point in the swing, the rope makes a 30 degree angle to the vertical. What is the force of tension in the rope?arrow_forward
- The tension is growing!Context At your summer job, your supervisor wants to test your physics skills. A new winch (a cable driven by a motor) is to be used to hoist loads up an inclined ramp. Your supervisor is worried about the packages arriving too quickly at the top of the ramp. Constraints The inclined ramp is made up of small cylinders that are free to rotate: there is no friction between the ramp and the load.The angle theta of the ramp from the horizontal is known.The winch cable exerts a known force.The cable is oriented at an angle a from the horizontal.The charge, initially immobile, has a known mass.The length of the ramp is known. Schematization Draw a diagram of the object that interests us. Draw your x and y axes. Draw and name each force experienced by the object that interests us. Modelization Build a model to calculate the final speed of the load as it arrives at the top of the ramp, given the known parameters. Then test your model with the following values: Ramp…arrow_forwardThe block shown in figure below lies on a smooth plane tilted at an angle θ = 20.8° to the horizontal. Determine the acceleration of the block as it slides down the plane. Ignore friction. If the block starts from rest x = 8.90 m up the plane from its base, what will be the block's speed when it reaches the bottom of the incline?arrow_forwardDetermine a wrench equivalent force system and specify the x and y coordinates of the point where the wrench's line of action intersects the xy plane. Take the value of M₁ to be 4.6 N·m and M2 to be 6.6 N-m. 0.8 m y 1 m M1 M2 10 N x The value of FR of the wrench equivalent force system is The value of MR of the wrench equivalent force system is The line of action of the wrench intersects the xy plane at x= The line of action of the wrench intersects the xy plane at y = k) N. ) N.m. (Round the final answer to one decimal place.) m. (Round the final answer to two decimal places.) m.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Conservative and Non Conservative Forces; Author: AK LECTURES;https://www.youtube.com/watch?v=vFVCluvSrFc;License: Standard YouTube License, CC-BY