Concept explainers
A seaplane of total mass m lands on a lake with initial speed
(a) Carry nut the integration to determine the speed of the seaplane as a function of time. (b) Sketch a graph of the speed as a function of time. (c) Does the seaplane come to a complete stop after a finite interval of time? (d) Does the seaplane travel a finite distance in stopping?
Trending nowThis is a popular solution!
Chapter 6 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- A pendulum has a length l (the rope is massless). The mass of the object suspended from the pendulum is m. With rope horizontal θ = 90o When it makes an angle of degrees, we first leave the object at no speed. Any friction can be neglected. Gravitational acceleration g. Give your answers in terms of l, m and g. When = 0o, what is the tension in the rope?arrow_forwardIn the figure, a force P acts on a block weighing 45.0 N. The block is initially at rest on a plane inclined at angle = 18.0° to the horizontal. The positive direction of the x axis is up the plane. The coefficients of friction between block and plane are μ = 0.540 and Uk = 0.340. In unit-vector notation, what is the frictional force on the block from the plane when Pis (a) (-5.30 N)î, (b) (-8.10 N)î, and (c) (-15.1 N)? (a) Number i (b) Number i (c) Number i i+ i+ i i i+ i j Units j Units j Unitsarrow_forwardInverted Pendulum: A pendulum of certain mass 'm' is attached to a rod of length 'I' and is constrained to move on xy-plane (see Figure above). After applying appropriate physical laws and relevant approximations, it is found that the angle e follows the following ordinary differential equation(ODE): انتقل إلى الإعدادت لتنشيد Here g = 9.81 m/s, the acceleration due to gravity. Solve the above ODE using ode45 from t = 0 to 2.5 sec witha step size of 0.1 sec. Plot 0(t) and e(t) in the same plot from t = 0 to 2.5sec Use I= 0.5 m and initial conditions e(0) 0.0 and é(t) = 0.25 (HINT: You need to decompose the above second order ODE into two first order ODES)arrow_forward
- Express the force F as a vector in terms of the unit vectors i, j, and k. Determine the angles 0x, 0y, and 0, which F makes with the positive x-, y, and z-axes. 2, mm | В (-25, 50, 40) F = 750 N y, mm А (15, -20, -25) X, mmarrow_forwardA player hits a ball with a speed of 39 m/s at an angle of Ɵ= 54 at a place where gravity is equal to 9.8 m/s 2 a. Find the x using this equation: x=Vo cos Ɵ t b. Find the y using : y=Vo sin Ɵ t – ½ gt2 c. Find the velocity of x and y d. Find the velocity along x axis using Vx= Vo cos Ɵ Vy= Vo sin Ɵ gtarrow_forwardParticles q1 = +8.0 x 10^-6, q2 = 3.5 x 10^-6, q3 -2.5 x 10^-6 are in a line. Particles q1 and q2 are separated by 0.10 m and particles q2 and q3 are separated by 0.15 m. What is the net force on particle q1?arrow_forward
- Determine the force Q-> when the block moves with constant velocity. Express your answer in vector form.arrow_forwardA box of mass 15.7 kg slides down an inclined plane without friction. If the acceleration, a, of the box along the direction of the plane is 4.1 m/s2, what is the angle θ (in degrees) of the plane with respect to the horizontal?arrow_forwardA block of mass 8.3 kg is initially at rest on a horizontal plane. The coefficients of kinetic and static friction between the plane and the block are respectivelyμc= 0.25 and μe= 0.36. Consider g = 10 m/s2 A horizontal force of magnitude F = 26.3 N is then applied to the block. In this situation, calculate the magnitude of the friction force (in N, to one decimal place).arrow_forward
- A large crate with mass mm rests on a horizontal floor. The static and kinetic coefficients of friction between the crate and the floor are μsμs and μkμk, respectively. A woman pushes downward on the crate at an angle θθ below the horizontal with a force F⃗ F→. 1. What is the magnitude of the force vector F⃗ F→ required to keep the crate moving at constant velocity? Express your answer in terms of mmm, ggg, θθ, and μkμk.arrow_forwardA block of mass m =1 kg, slides down a rough incline with constant velocity. The coefficient of kinetic friction between the block and the incline is µr, and the incline makes an angle 0 = 30° horizontal. Take g = 10 m/s2. The coefficient of kinetic friction µ is then equal to: v= constant with the O 0.577 O 0.466 O 0.422 O 0.364arrow_forwardA stacked pair of books with masses m1= 2.0 kg (bottom book) and m2 = 1.5 kg (top book) are tossed onto a table. The books strike the table with no vertical velocity and their common horizontal speed is ?o = 0.75 m/s. The kinetic friction coefficient between the bottom book and the table is ?k1=0.45; the kinetic and static friction coefficients between the two books are ?k2=0.3 and ?s2= 0.4. Find the final horizontal position of each book relative to the spot where the stack hits the table.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON