A single bead can slide with negligible friction on a stiff wire that has been bent into a circular loop of radius 15.0 cm as shown in Figure P6.68. The circle is always in a vertical plane and rotates steadily about its vertical diameter with a period of 0.450 s. The position of the bead is described by the angle h that the radial line, from the center of the loop to the bead, makes with the vertical, (a) At what angle up from the bottom of the circle can the bead stay motionless relative to the turning circle? (b) What If? Repeat the problem, this time taking the period of the circle's rotation as 0.850 s. (c) Describe how the solution to part (b) is different from the solution to part (a), (d) For any period or loop size, is there always an angle at which the bead can stand still relative to the loop? (e) Are there ever more than two angles? Arnold Arons suggested the idea for this problem.
Gravitational force
In nature, every object is attracted by every other object. This phenomenon is called gravity. The force associated with gravity is called gravitational force. The gravitational force is the weakest force that exists in nature. The gravitational force is always attractive.
Acceleration Due to Gravity
In fundamental physics, gravity or gravitational force is the universal attractive force acting between all the matters that exist or exhibit. It is the weakest known force. Therefore no internal changes in an object occurs due to this force. On the other hand, it has control over the trajectories of bodies in the solar system and in the universe due to its vast scope and universal action. The free fall of objects on Earth and the motions of celestial bodies, according to Newton, are both determined by the same force. It was Newton who put forward that the moon is held by a strong attractive force exerted by the Earth which makes it revolve in a straight line. He was sure that this force is similar to the downward force which Earth exerts on all the objects on it.
A single bead can slide with negligible friction on a stiff wire that has been bent into a circular loop of radius 15.0 cm as shown in Figure P6.68. The circle is always in a vertical plane and rotates steadily about its vertical diameter with a period of 0.450 s. The position of the bead is described by the angle h that the radial line, from the center of the loop to the bead, makes with the vertical, (a) At what angle up from the bottom of the circle can the bead stay motionless relative to the turning circle? (b) What If? Repeat the problem, this time taking the period of the circle's rotation as 0.850 s. (c) Describe how the solution to part (b) is different from the solution to part (a), (d) For any period or loop size, is there always an angle at which the bead can stand still relative to the loop? (e) Are there ever more than two angles? Arnold Arons suggested the idea for this problem.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 10 images