Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 6.12P
A pail of water is rotated in a vertical circle of radius 10.00 m. (a) What two external forces act 011 the water in the pail? (b) Which of the two forces is most important in causing the water to move in a circle? (c) What is the pail’s minimum speed at the top of the circle if no water is to spill out? (d) Assume the pail with the speed found in part (c) were to suddenly disappear at the top of the circle. Describe the subsequent motion of the water. Would it differ from the motion of a projectile?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A 54.0-kg ice skater is moving at 3.99 m/s when she grabs the loose end of a rope, the opposite end of which is tied to a pole. She then
moves in a circle of radius 0.900 m around the pole.
(a) Determine the magnitude of the force exerted by the horizontal rope on her arms.
kN
(b) Compare this force with her weight.
Frope
W
Need Help?
Read It
You swing a 4.6-kg bucket of water in a vertical circle of radius 1.4m.A) What speed must the bucket have if it is to complete the circle without spilling any water?B) How does your answer depend on the mass of the bucket?
A 55.2 kg ice skater is moving at 4.07 m/s when she grabs the loose end of a rope, the opposite end of which is tied to a pole. She then moves in a circle of radius 0.805 m around th
pole.
(a) Determine the force exerted by the horizontal rope on her arms.
(b) Compare this force with her weight by finding the ratio of the force to her weight.
Chapter 6 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 6 - You are riding on a Ferris wheel that is rotating...Ch. 6 - A bead slides at constant speed along a curved...Ch. 6 - Consider the passenger in the car making a left...Ch. 6 - A basketball and a 2-inch-diameter steel ball,...Ch. 6 - A child is practicing for a BMX race. His speed...Ch. 6 - Consider a skydive r who has stepped from a...Ch. 6 - A door in a hospital has a pneumatic closer that...Ch. 6 - A pendulum consists of a small object called a bob...Ch. 6 - As a raindrop falls through the atmosphere, its...Ch. 6 - An office door is given a sharp push and swings...
Ch. 6 - Before takeoff on an airplane, an inquisitive...Ch. 6 - What forces cause (a) an automobile, (b) a...Ch. 6 - A falling skydiver reaches terminal speed with her...Ch. 6 - An object executes circular motion with constant...Ch. 6 - Describe the path of a moving body in the event...Ch. 6 - The observer in the accelerating elevator of...Ch. 6 - Prob. 6.6CQCh. 6 - It has been suggested dial rotating cylinders...Ch. 6 - Consider a small raindrop and a large raindrop...Ch. 6 - Why does a pilot lend to black out when pulling...Ch. 6 - Prob. 6.10CQCh. 6 - If the current position and velocity of every...Ch. 6 - A light string can support a stationary hanging...Ch. 6 - Whenever two Apollo astronauts were on the surface...Ch. 6 - In the Bohr model of the hydrogen atom, an...Ch. 6 - A curve in a road forms part of a horizontal...Ch. 6 - In a cyclotron (one type of particle accelerator),...Ch. 6 - A car initially traveling eastward turns north by...Ch. 6 - A space station, in the form of a wheel 120 m in...Ch. 6 - Consider a conical pendulum (Fig. P6.8) with a bob...Ch. 6 - A coin placed 30.0 cm from the center of a...Ch. 6 - Why is the following situation impossible? The...Ch. 6 - A crate of eggs is located in the middle of the...Ch. 6 - A pail of water is rotated in a vertical circle of...Ch. 6 - A hawk flies in a horizontal arc of radius 12.0 m...Ch. 6 - A 40.0-kg child swings in a swing supported by two...Ch. 6 - A child of mass m swings in a swing supported by...Ch. 6 - A roller-coaster car (Fig. P6.16) has a mass of...Ch. 6 - A roller coaster at the Six Flags Great America...Ch. 6 - One end of a cord is fixed and a small 0.500-kg...Ch. 6 - Prob. 6.19PCh. 6 - An object of mass m = 5.00 kg, attached to a...Ch. 6 - All object of mass m = 500 kg is suspended from...Ch. 6 - A child lying on her back experiences 55.0 N...Ch. 6 - A person stands on a scale in an elevator. As the...Ch. 6 - Review. A student, along with her backpack on the...Ch. 6 - A small container of water is placed on a...Ch. 6 - Review. (a) Estimate the terminal speed of a...Ch. 6 - The mass of a sports car is 1 200 kg. The shape of...Ch. 6 - A skydiver of mass 80.0 kg jumps from a...Ch. 6 - Calculate the force required to pull a copper ball...Ch. 6 - A small piece of Styrofoam packing material is...Ch. 6 - Prob. 6.31PCh. 6 - Prob. 6.32PCh. 6 - Assume the resistive force acting on a speed...Ch. 6 - Review. A window washer pulls a rubber squeegee...Ch. 6 - A motorboat cuts its engine when its speed is 10.0...Ch. 6 - You can feel a force of air drag on your hand if...Ch. 6 - A car travels clockwise at constant speed around a...Ch. 6 - The mass of a roller-coaster car, including its...Ch. 6 - A string under a tension of 50.0 N is used to...Ch. 6 - Disturbed by speeding cars outside his workplace,...Ch. 6 - A car of mass m passes over a hump in a road that...Ch. 6 - A childs toy consists of a small wedge that has an...Ch. 6 - A seaplane of total mass m lands on a lake with...Ch. 6 - An object of mass m1 = 4.00 kg is tied to an...Ch. 6 - A ball of mass m = 0.275 kg swings in a vertical...Ch. 6 - Why is the following situation impossible? A...Ch. 6 - (a) A luggage carousel at an airport has the form...Ch. 6 - In a home laundry dryer, a cylindrical tub...Ch. 6 - Prob. 6.49APCh. 6 - A basin surrounding a drain has the shape of a...Ch. 6 - A truck is moving with constant acceleration a up...Ch. 6 - The pilot of an airplane executes a loop-the-loop...Ch. 6 - Review. While learning to drive, you arc in a 1...Ch. 6 - A puck of mass m1 is tied to a string and allowed...Ch. 6 - Because the Earth rotates about its axis, a point...Ch. 6 - Galileo thought about whether acceleration should...Ch. 6 - Figure P6.57 shows a photo of a swing a ride at an...Ch. 6 - Review. A piece of putty is initially located at...Ch. 6 - An amusement park ride consists of a large...Ch. 6 - Members of a skydiving club were given the...Ch. 6 - A car rounds a banked curve as discussed in...Ch. 6 - In Example 6.5, we investigated the forces a child...Ch. 6 - A model airplane of mass 0.750 kg flies with a...Ch. 6 - A student builds and calibrates an accelerometer...Ch. 6 - A 9.00-kg object starting from rest falls through...Ch. 6 - For t 0, an object of mass m experiences no force...Ch. 6 - A golfer tees off from a location precisely at i =...Ch. 6 - A single bead can slide with negligible friction...Ch. 6 - Prob. 6.69CPCh. 6 - Because of the Earths rotation, a plumb bob does...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A bucket which has a mass of 910 g when empty and contains 3 litres of water is swunground in a vertical circle at 40 r/min. if the cg of the bucket plus water is 1,05 m from theperson’s shoulder, determine the force on each of the two pins securing the handle ofthe bucket when the bucket is:1.at the bottom of the circlearrow_forwardA race car travels 76 m/s around a circulartrack of radius 159 m What is the magnitude of the resultantforce on the 1600 kg driver and his car ifthe car does not slip?Answer in units of kN.arrow_forwardA string is attached to a 120-gram wooden cube. The string turns in a horizontal circle of radius 5.0 cm but make angle of 25° below the horizontal. a) Calculate the tension in the string B) Calculate the speed of the wooden block.arrow_forward
- An automobile moves on a level horizontal road in a circle of radius 50 m. The coefficient of static friction between tires and road is 0.50. (a) Calculate the maximum speed with which this car can round this curve. Now, suppose the road is covered with ice, there is no friction. Instead, the road is banked. (b) Calculate the angle the road must be banked at in order to make the car round the curve with the same maximum speed.arrow_forwardA bucket of water is traveling in a 1.5 m vertical circle. Determine the minimum speed the bucket must have so that the water does not fall out.arrow_forwardA cellphone steps into a “Graviton” and stands up against the frictionalwall. The Gravitron starts to spin and the floor lowers below the cellphone butthe cellphone does not accelerate downwards, she has no net force vertically. Assume:● The radius of the Gravitron is 7.5 m● The cellphone has a tangential velocityof 15 m/s● The man has mass M Determine: Determine the minimum coe cient of static friction between the wall and the cellphone.arrow_forward
- Which of the following is the correct expression for the speed of the mass in uniform circular motion?arrow_forwardA 55.0 Kg ice skater is moving at 4.00 m/s when she grabs the loose end of the rope, the opposite end of which is tied to a pole. She then moves in a circle of radius 0.800 m around the pole. a) Determine the force exerted by the horizontal rope on her arms. b) Compare this force with her weight.arrow_forwardWhat is the maximum speed with which a 1200 kg car can round a turn of radius 89.0m on a flat tire road if the coefficient of static friction between tires and road is 0.45? Express your answer to two significant figures and include the appropriate units.arrow_forward
- A fullback is running a sweep around the left side of the line. As he rounds the turn, he is momentarily moving in circular motion, sweeping out a quarter-circle with a radius of 4.17 meters. If the 83.5-kg fullback makes the turn with a speed of 5.21 m/s, then what is his acceleration, the net force, the angle of lean (measured to the vertical), and the total contact force with the ground? PSYW a = ____________ Fnet = ____________ Fgrav = ____________ Fnorm = ____________ Ffrict = ____________ Fcontact = ____________ Angle of Lean = ____________arrow_forwardA jet flying at 112 m/s banks to make a horizontal circular turn. The radius of the turn is 3810 m, and the mass of the jet is 1.74 x 105 kg. Calculate the magnitude of the necessary lifting force.arrow_forwardA bucket which has a mass of 910 g when empty and contains 3 litres of water is swunground in a vertical circle at 40 r/min. if the cg of the bucket plus water is 1,05 m from theperson’s shoulder, determine the force on each of the two pins securing the handle ofthe bucket when the bucket is:1.at the top of the circlearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY