A First Course in Probability (10th Edition)
10th Edition
ISBN: 9780134753119
Author: Sheldon Ross
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 6.18STPE
6.18. Let
4V’H and
Y, be independent random
= i1.. . ., .X’,, = i,1} = P{)1 = i1.. . .. = i,1}
1
= ,ij=o,1, j=1ij=:1I.
(n
\
N = 1=1Ix—)’;
I denote the number of coordinates at which the two vectors have different values. Also, let
M denote the number of values of i for which
= 0.
a. Relate N to M.
b. What is the distribution of M?
c. Find E [ N].
d. Find Var (N).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Let JO, J1,..., J4 independent random variables according to the Ber (r;) law, where i =
0, 1,..., 4, respectively.
We define the random variables Xi = min {JO + Ji, 1}, for i = 1, 2, 3,
(a) Find the law of Xi , for each i = 1, 2, 3, 4.
(b) Find the law of (X1, X2, X3, X4).
TRUE OR FALSE.
a.) Let X
(X₁, X2,..., Xn)' be a random vector with joint cumulative distribution function
2
-
fx(-). Then (Xi − #i)² has a chi-square distribution with n degrees of freedom where
72
i=1
Hand o are the mean and variance, respectively, of each of the random variable in X, i =
1,2,..., n.
b.) Let X₁, X2,..., Xn be a random sample from a density f(), which has mean and finite
n
0²
n
variance o2, and let X =
n
X₁. Then E[X] = µ and Var(X) =
μ
=
c.) For any random variables X and Y, E[XY] = E[X] E[Y].
Let X ~ N(0, 2) and Y ~
covariances Cov(X,Y) and Cov(Y, X +Y).
Exp(A = 3) be two uncorrelated random variables. Find the
Chapter 6 Solutions
A First Course in Probability (10th Edition)
Ch. 6 - Two fair dice are rolled. Find the joint...Ch. 6 - Suppose that 3 balls are chosen without...Ch. 6 - In Problem 8 t, suppose that the white balls are...Ch. 6 - Repeat Problem 6.2 when the ball selected is...Ch. 6 - Repeat Problem 6.3a when the ball selected is...Ch. 6 - The severity of a certain cancer is designated by...Ch. 6 - Consider a sequence of independent Bernoulli...Ch. 6 - Prob. 6.8PCh. 6 - The joint probability density function of X and Y...Ch. 6 - Prob. 6.10P
Ch. 6 - In Example Id, verify that f(x,y)=2exe2y,0x,0y, is...Ch. 6 - The number of people who enter a drugstore in a...Ch. 6 - A man and a woman agree to meet at a certain...Ch. 6 - An ambulance travels back and forth at a constant...Ch. 6 - The random vector (X,Y) is said to be uniformly...Ch. 6 - Suppose that n points are independently chosen at...Ch. 6 - Prob. 6.17PCh. 6 - Let X1 and X2 be independent binomial random...Ch. 6 - Show that f(x,y)=1x, 0yx1 is a joint density...Ch. 6 - Prob. 6.20PCh. 6 - Let f(x,y)=24xy0x1,0y1,0x+y1 and let it equal 0...Ch. 6 - The joint density function of X and Y is...Ch. 6 - Prob. 6.23PCh. 6 - Consider independent trials, each of which results...Ch. 6 - Suppose that 106 people arrive at a service...Ch. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - The time that it takes to service a car is an...Ch. 6 - The gross daily sales at a certain restaurant are...Ch. 6 - Jills bowling scores are approximately normally...Ch. 6 - According to the U.S. National Center for Health...Ch. 6 - Monthly sales are independent normal random...Ch. 6 - Let X1 and X2 be independent normal random...Ch. 6 - Prob. 6.34PCh. 6 - Teams 1, 2, 3, 4 are all scheduled to play each of...Ch. 6 - Let X1,...,X10 be independent with the same...Ch. 6 - The expected number of typographical errors on a...Ch. 6 - The monthly worldwide average number of airplane...Ch. 6 - In Problem 6.4, calculate the conditional...Ch. 6 - In Problem 6.3 calculate the conditional...Ch. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - The joint probability mass function of X and Y is...Ch. 6 - Prob. 6.45PCh. 6 - Prob. 6.46PCh. 6 - An insurance company supposes that each person has...Ch. 6 - If X1,X2,X3 are independent random variables that...Ch. 6 - Prob. 6.49PCh. 6 - If 3 trucks break down at points randomly...Ch. 6 - Consider a sample of size 5 from a uniform...Ch. 6 - Prob. 6.52PCh. 6 - Let X(1),X(2),...,X(n) be the order statistics of...Ch. 6 - Let Z1 and Z2 be independent standard normal...Ch. 6 - Derive the distribution of the range of a sample...Ch. 6 - Let X and Y denote the coordinates of a point...Ch. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - Prob. 6.59PCh. 6 - Prob. 6.60PCh. 6 - Repeat Problem 6.60 when X and Y are independent...Ch. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - In Example 8b, let Yk+1=n+1i=1kYi. Show that...Ch. 6 - Consider an urn containing n balls numbered 1.. .....Ch. 6 - Suppose X,Y have a joint distribution function...Ch. 6 - Prob. 6.2TECh. 6 - Prob. 6.3TECh. 6 - Solve Buffons needle problem when LD.Ch. 6 - If X and Y are independent continuous positive...Ch. 6 - Prob. 6.6TECh. 6 - Prob. 6.7TECh. 6 - Let X and Y be independent continuous random...Ch. 6 - Let X1,...,Xn be independent exponential random...Ch. 6 - The lifetimes of batteries are independent...Ch. 6 - Prob. 6.11TECh. 6 - Show that the jointly continuous (discrete) random...Ch. 6 - In Example 5e t, we computed the conditional...Ch. 6 - Suppose that X and Y are independent geometric...Ch. 6 - Consider a sequence of independent trials, with...Ch. 6 - If X and Y are independent binomial random...Ch. 6 - Suppose that Xi,i=1,2,3 are independent Poisson...Ch. 6 - Prob. 6.18TECh. 6 - Let X1,X2,X3 be independent and identically...Ch. 6 - Prob. 6.20TECh. 6 - Suppose that W, the amount of moisture in the air...Ch. 6 - Let W be a gamma random variable with parameters...Ch. 6 - A rectangular array of mn numbers arranged in n...Ch. 6 - If X is exponential with rate , find...Ch. 6 - Suppose thatF(x) is a cumulative distribution...Ch. 6 - Show that if n people are distributed at random...Ch. 6 - Suppose that X1,...,Xn are independent exponential...Ch. 6 - Establish Equation (6.2) by differentiating...Ch. 6 - Show that the median of a sample of size 2n+1 from...Ch. 6 - Prob. 6.30TECh. 6 - Compute the density of the range of a sample of...Ch. 6 - Let X(1)X(2)...X(n) be the ordered values of n...Ch. 6 - Let X1,...,Xn be a set of independent and...Ch. 6 - Let X1,....Xn, be independent and identically...Ch. 6 - Prob. 6.35TECh. 6 - Prob. 6.36TECh. 6 - Suppose that (X,Y) has a bivariate normal...Ch. 6 - Suppose that X has a beta distribution with...Ch. 6 - 6.39. Consider an experiment with n possible...Ch. 6 - Prob. 6.40TECh. 6 - Prob. 6.41TECh. 6 - Each throw of an unfair die lands on each of the...Ch. 6 - The joint probability mass function of the random...Ch. 6 - Prob. 6.3STPECh. 6 - Let r=r1+...+rk, where all ri are positive...Ch. 6 - Suppose that X, Y, and Z are independent random...Ch. 6 - Let X and Y be continuous random variables with...Ch. 6 - The joint density function of X and Y...Ch. 6 - Consider two components and three types of shocks....Ch. 6 - Consider a directory of classified advertisements...Ch. 6 - The random parts of the algorithm in Self-Test...Ch. 6 - Prob. 6.11STPECh. 6 - The accompanying dartboard is a square whose sides...Ch. 6 - A model proposed for NBA basketball supposes that...Ch. 6 - Let N be a geometric random variable with...Ch. 6 - Prob. 6.15STPECh. 6 - You and three other people are to place bids for...Ch. 6 - Find the probability that X1,X2,...,Xn is a...Ch. 6 - 6.18. Let 4VH and Y, be independent random...Ch. 6 - Let Z1,Z2.....Zn be independent standard normal...Ch. 6 - Let X1,X2,... be a sequence of independent and...Ch. 6 - Prove the identity P{Xs,Yt}=P{Xs}+P{Yt}+P{Xs,Yt}1...Ch. 6 - In Example 1c, find P(Xr=i,Ys=j) when ji.Ch. 6 - A Pareto random variable X with parameters a0,0...Ch. 6 - Prob. 6.24STPECh. 6 - Prob. 6.25STPECh. 6 - Let X1,...,Xn, be independent nonnegative integer...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.Similar questions
- show complete and detailed solution..arrow_forward17. Let die die = {(W₁ W₂) : w₁ = 1, 2, 3, 4, 5, 6; w₂= 1,2,3,4,5,6} and consider two random variables X(W₁=W₂) =W₁ + W₂= Y(w₁, W₂) = W₁ - W₂. Compute Cov(X, Y). Are they independent?arrow_forwardLet x1 and x1 be independent standard normal random variables. If Y1= x1 + 2x2 and Y2 = 2x1 - x2, find Fy1,y2(1,2)arrow_forward
- Suppose that three balls are randomly chosen without replacement from a box containing 4 white and 7 black balls. Let Xi be 1 if i th ball selected is white, ant let it be 0 otherwise.a. Write down Probability mass functions of X1, X2 and X3 in tabular form;b. Write down the joint probability mass function of X1, X2;c. Find the joint probability mass function of X1, X2 and X3. Repeat this problem, when the ball is replaced in the box before the next selection. Please justify your answers. Thanks!arrow_forwardB) Let X and Y be discrete random variables with joint probability function 2-y+1 9 for x = 1,2 and y = 1, 2 p(x, y) otherwise Calculate E(Y/X).arrow_forwardQ2: (b) Let X₁, X2, X3 be uncorrelated random variables, having the same variance o². Consider the linear transformations Y₁ = X₁ + X₂, X2 + X3. Find the correlations of Y₁, Y; i, Y₂ = X₁ + X3 and Y3 for i + j. =arrow_forward
- Let X1 and X2 be discrete random variables with joint probability distribution x1 = 1, 2; x2 = 1, 2, 3, f(x1, x2) = 10, 18 elsewhere. Find the probability distribution of the random variable Y = X1X2.arrow_forwardif x1, x2, ..., Xn be a random sample from Bin(4,0). is T = x UMVUE ? Justify your answer.arrow_forwardLet X and Y be two random variables such that E(X)=1, E(Y)=2, X, = 3X-2 and Y = 2Y +1. If Cov(X,,Y) = -4, then E(XY) = 17/6 8/6 27/6 None of thesearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Mod-01 Lec-01 Discrete probability distributions (Part 1); Author: nptelhrd;https://www.youtube.com/watch?v=6x1pL9Yov1k;License: Standard YouTube License, CC-BY
Discrete Probability Distributions; Author: Learn Something;https://www.youtube.com/watch?v=m9U4UelWLFs;License: Standard YouTube License, CC-BY
Probability Distribution Functions (PMF, PDF, CDF); Author: zedstatistics;https://www.youtube.com/watch?v=YXLVjCKVP7U;License: Standard YouTube License, CC-BY
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License