A First Course in Probability (10th Edition)
10th Edition
ISBN: 9780134753119
Author: Sheldon Ross
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 6.27P
To determine
To Find : The distribution of
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Let X1, X2, and.X3 be independent and normally distributed random variables with E(X1)
4, E(X2) = 3, E(X3) = 2, Var(X1) = 1, Var(X2) = 5, Var(X3) = 2. Let Y = 2X1 + X2 – 3X3. Find
2.
the distribution of Y.
Suppose that X₁, X2, X3 are independent and identically distributed
random variables with distribution function:
Fx (x)=12* for x ≥ 0 and Fx (x) = 0 for x 4).
EX7.8) Let Y be a random variable having a uniform normal distribution
such that
Y U(2,5)
2
Find the variance of random variable Y.
Chapter 6 Solutions
A First Course in Probability (10th Edition)
Ch. 6 - Two fair dice are rolled. Find the joint...Ch. 6 - Suppose that 3 balls are chosen without...Ch. 6 - In Problem 8 t, suppose that the white balls are...Ch. 6 - Repeat Problem 6.2 when the ball selected is...Ch. 6 - Repeat Problem 6.3a when the ball selected is...Ch. 6 - The severity of a certain cancer is designated by...Ch. 6 - Consider a sequence of independent Bernoulli...Ch. 6 - Prob. 6.8PCh. 6 - The joint probability density function of X and Y...Ch. 6 - Prob. 6.10P
Ch. 6 - In Example Id, verify that f(x,y)=2exe2y,0x,0y, is...Ch. 6 - The number of people who enter a drugstore in a...Ch. 6 - A man and a woman agree to meet at a certain...Ch. 6 - An ambulance travels back and forth at a constant...Ch. 6 - The random vector (X,Y) is said to be uniformly...Ch. 6 - Suppose that n points are independently chosen at...Ch. 6 - Prob. 6.17PCh. 6 - Let X1 and X2 be independent binomial random...Ch. 6 - Show that f(x,y)=1x, 0yx1 is a joint density...Ch. 6 - Prob. 6.20PCh. 6 - Let f(x,y)=24xy0x1,0y1,0x+y1 and let it equal 0...Ch. 6 - The joint density function of X and Y is...Ch. 6 - Prob. 6.23PCh. 6 - Consider independent trials, each of which results...Ch. 6 - Suppose that 106 people arrive at a service...Ch. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - The time that it takes to service a car is an...Ch. 6 - The gross daily sales at a certain restaurant are...Ch. 6 - Jills bowling scores are approximately normally...Ch. 6 - According to the U.S. National Center for Health...Ch. 6 - Monthly sales are independent normal random...Ch. 6 - Let X1 and X2 be independent normal random...Ch. 6 - Prob. 6.34PCh. 6 - Teams 1, 2, 3, 4 are all scheduled to play each of...Ch. 6 - Let X1,...,X10 be independent with the same...Ch. 6 - The expected number of typographical errors on a...Ch. 6 - The monthly worldwide average number of airplane...Ch. 6 - In Problem 6.4, calculate the conditional...Ch. 6 - In Problem 6.3 calculate the conditional...Ch. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - The joint probability mass function of X and Y is...Ch. 6 - Prob. 6.45PCh. 6 - Prob. 6.46PCh. 6 - An insurance company supposes that each person has...Ch. 6 - If X1,X2,X3 are independent random variables that...Ch. 6 - Prob. 6.49PCh. 6 - If 3 trucks break down at points randomly...Ch. 6 - Consider a sample of size 5 from a uniform...Ch. 6 - Prob. 6.52PCh. 6 - Let X(1),X(2),...,X(n) be the order statistics of...Ch. 6 - Let Z1 and Z2 be independent standard normal...Ch. 6 - Derive the distribution of the range of a sample...Ch. 6 - Let X and Y denote the coordinates of a point...Ch. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - Prob. 6.59PCh. 6 - Prob. 6.60PCh. 6 - Repeat Problem 6.60 when X and Y are independent...Ch. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - In Example 8b, let Yk+1=n+1i=1kYi. Show that...Ch. 6 - Consider an urn containing n balls numbered 1.. .....Ch. 6 - Suppose X,Y have a joint distribution function...Ch. 6 - Prob. 6.2TECh. 6 - Prob. 6.3TECh. 6 - Solve Buffons needle problem when LD.Ch. 6 - If X and Y are independent continuous positive...Ch. 6 - Prob. 6.6TECh. 6 - Prob. 6.7TECh. 6 - Let X and Y be independent continuous random...Ch. 6 - Let X1,...,Xn be independent exponential random...Ch. 6 - The lifetimes of batteries are independent...Ch. 6 - Prob. 6.11TECh. 6 - Show that the jointly continuous (discrete) random...Ch. 6 - In Example 5e t, we computed the conditional...Ch. 6 - Suppose that X and Y are independent geometric...Ch. 6 - Consider a sequence of independent trials, with...Ch. 6 - If X and Y are independent binomial random...Ch. 6 - Suppose that Xi,i=1,2,3 are independent Poisson...Ch. 6 - Prob. 6.18TECh. 6 - Let X1,X2,X3 be independent and identically...Ch. 6 - Prob. 6.20TECh. 6 - Suppose that W, the amount of moisture in the air...Ch. 6 - Let W be a gamma random variable with parameters...Ch. 6 - A rectangular array of mn numbers arranged in n...Ch. 6 - If X is exponential with rate , find...Ch. 6 - Suppose thatF(x) is a cumulative distribution...Ch. 6 - Show that if n people are distributed at random...Ch. 6 - Suppose that X1,...,Xn are independent exponential...Ch. 6 - Establish Equation (6.2) by differentiating...Ch. 6 - Show that the median of a sample of size 2n+1 from...Ch. 6 - Prob. 6.30TECh. 6 - Compute the density of the range of a sample of...Ch. 6 - Let X(1)X(2)...X(n) be the ordered values of n...Ch. 6 - Let X1,...,Xn be a set of independent and...Ch. 6 - Let X1,....Xn, be independent and identically...Ch. 6 - Prob. 6.35TECh. 6 - Prob. 6.36TECh. 6 - Suppose that (X,Y) has a bivariate normal...Ch. 6 - Suppose that X has a beta distribution with...Ch. 6 - 6.39. Consider an experiment with n possible...Ch. 6 - Prob. 6.40TECh. 6 - Prob. 6.41TECh. 6 - Each throw of an unfair die lands on each of the...Ch. 6 - The joint probability mass function of the random...Ch. 6 - Prob. 6.3STPECh. 6 - Let r=r1+...+rk, where all ri are positive...Ch. 6 - Suppose that X, Y, and Z are independent random...Ch. 6 - Let X and Y be continuous random variables with...Ch. 6 - The joint density function of X and Y...Ch. 6 - Consider two components and three types of shocks....Ch. 6 - Consider a directory of classified advertisements...Ch. 6 - The random parts of the algorithm in Self-Test...Ch. 6 - Prob. 6.11STPECh. 6 - The accompanying dartboard is a square whose sides...Ch. 6 - A model proposed for NBA basketball supposes that...Ch. 6 - Let N be a geometric random variable with...Ch. 6 - Prob. 6.15STPECh. 6 - You and three other people are to place bids for...Ch. 6 - Find the probability that X1,X2,...,Xn is a...Ch. 6 - 6.18. Let 4VH and Y, be independent random...Ch. 6 - Let Z1,Z2.....Zn be independent standard normal...Ch. 6 - Let X1,X2,... be a sequence of independent and...Ch. 6 - Prove the identity P{Xs,Yt}=P{Xs}+P{Yt}+P{Xs,Yt}1...Ch. 6 - In Example 1c, find P(Xr=i,Ys=j) when ji.Ch. 6 - A Pareto random variable X with parameters a0,0...Ch. 6 - Prob. 6.24STPECh. 6 - Prob. 6.25STPECh. 6 - Let X1,...,Xn, be independent nonnegative integer...
Knowledge Booster
Similar questions
- Suppose the variance of the difference of two random variables X and Y is zero. Then, show that X = Y + c for some constant c almost surely. Also find the value of c.arrow_forwardEXER 6.3 Find the covariance and the correlation coefficient between X and Y, if X and Y are jointly discrete random variables, with joint PMF given by: SHOW SOLUTIONS X\Y 0 1 6 0 28 6 1 28 2 0 333333 28 28 28 2120 28 0arrow_forwardLet x be random variable with E(x) = 2 and var(x) = 3. Verify that random variable x and the random variable y=-4x+8 are orthogonal. CS Scanned with CamScannerarrow_forward
- Suppose that X₁, X2, X3 are independent and identically distributed random variables with distribution function: Fx (x) = 1 – 3¯ª for x ≥ 0 and Fx (x) = 0 for x 1).arrow_forwardLet X1, X2, X3 be random variables each having a mean u and variance o. Further, Cov(X1, X2) = 2, Cov(X1.X3) = 3 and Cov(X2, X3) = 1 Define U = 2X1 – X2 + 4 X3 Solve for the mean and standard deviation of U.arrow_forwardSuppose that X₁, X₂, Xn and Y₁, Y2, . Yn are independent random samples from populations with means ₁ and ₂ and variances of and o2, respectively. Show that X - Y is a consistent estimator of μ₁ - 2.arrow_forward
- Consider two independent exponential random variables X1 and X2 with parameter lambda=1. LetY1 = X1 Y2 = X1 + X2. Find the MMSE estimate of Y1 using Y2.arrow_forwardSuppose X and Y are independent. X has a mean of 1 and variance of 1, Y has a mean of 0, and variance of 2. Let S=X+Y, calculate E(S) and Var(S). Let Z=2Y^2+1/2 X+1 calculate E(Z). Hint: for any random variable X, we have Var(X)=E(X-E(X))^2=E(X^2 )-(E(X))^2, you may want to find EY^2 with this. Calculate cov(S,X). Hint: similarly, we have cov(Z,X)=E(ZX)-E(Z)E(X), Calculate cov(Z,X). Are Z and X independent? Are Z and Y independent? Why? What about mean independence?arrow_forwardDetermine ?(?>2).arrow_forward
- If X is a binomially distributed random variable with E(X) var (X) 4/3; find the distribution of X. = 2 andarrow_forwardIf the random variable X follows the uniform distribution U= (0,1) What is the distribution of the random variable Y= -2lnX. Show its limits.arrow_forwardLet X be a random variable such that E(X) = 5 and V(X) = 4. The mean and the variance of 3X+4 are equal to: E(3X+4)=13 and V(3X+4)= 54 E(3X+4)=19 and V(3X+4)= 36 None of these E(3X+4)=16 and V(3X+4)= 72arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- A First Course in Probability (10th Edition)ProbabilityISBN:9780134753119Author:Sheldon RossPublisher:PEARSON
A First Course in Probability (10th Edition)
Probability
ISBN:9780134753119
Author:Sheldon Ross
Publisher:PEARSON