Concept explainers
Two fair dice are rolled. Find the joint
a. X is the largest value obtained on any die and
Y is the sum of the values;
b. X is the value on the first die and
Y is the larger of the two values;
c. X is the smallest and
Y is the largest value obtained on the dice.
(a)
To find: Joint probability mass function with X be the largest value Y be the sum of values.
Answer to Problem 6.1P
Joint probability mass function:
Explanation of Solution
Given information:
While rolling two fair dice,
X is the largest value obtained on any die.
Y is the sum of the values.
Let
N1 and N2 as the random variables that mark numbers obtained on the first and second die.
We know that
N1 and N2 are independent.
Such that
N1 , N2 ? D Unif(1,…,6).
In this part,
We have
And
Thus,
And
Also,
We have
Then
Take any
Where,
k and l are from the ranges of X and Y .
Consider event
That means
The maximum value on any die is k .
And
The sum of both dice is l .
Now,
Observe that
If
The only possible pairs of
If
The only possible pair is
Therefore,
The required probability mass function is
(b)
To find: Joint probability mass function with X be the value on first die and Y be the larger value.
Answer to Problem 6.1P
Joint probability mass function:
Explanation of Solution
Given information:
While rolling two fair dice,
X is the value on the first die.
Y is the larger of the two values.
Let
N1 and N2 as the random variables that mark numbers obtained on the first and second die.
We know that
N1 and N2 are independent.
In this part,
We have
And
Then
Observe that
And
Take any
Then
We have
Suppose that
We already have
In such case,
N2 can be any number from the range
Thus,
If
And
N2 must be equal to l to obtain
Thus,
(c)
To find: Joint probability mass function with X be the smallest and Y be the largest value obtained.
Answer to Problem 6.1P
Joint probability mass function:
Explanation of Solution
Given information:
While rolling two fair dice,
X is the smallest value.
Y is the largest value.
Let
N1 and N2 as the random variables that mark numbers obtained on the first and second die.
We know that
N1 and N2 are independent.
In this part,
We have
And
We also have
Then
Take any
Suppose that
In such case,
We need to have
Or
Thus,
There are only two possibilities.
If
The only possibility will be
Thus,
Want to see more full solutions like this?
Chapter 6 Solutions
A First Course in Probability (10th Edition)
Additional Math Textbook Solutions
Elementary Statistics Using The Ti-83/84 Plus Calculator, Books A La Carte Edition (5th Edition)
Elementary & Intermediate Algebra
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
Elementary Statistics: Picturing the World (7th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Algebra and Trigonometry (6th Edition)
- marks 11 3 3/4 x 1/4 1. There are 4 balls in an urn, of which 3 balls are white and 1 ball is black. You do the following: draw a ball from the urn at random, note its colour, do not return the ball to the urn; draw a second ball, note its colour, return the ball to the urn; finally draw a third ball and note its colour. (i) Describe the corresponding discrete probability space (Q, F, P). [9 Marks] (ii) Consider the following event, A: Among the first and the third balls, one ball is white, the other is black. Write down A as a subset of the sample space and find its probability, P(A). [2 Marks]arrow_forwardThere are 4 balls in an urn, of which 3 balls are white and 1 ball isblack. You do the following:• draw a ball from the urn at random, note its colour, do not return theball to the urn;• draw a second ball, note its colour, return the ball to the urn;• finally draw a third ball and note its colour.(i) Describe the corresponding discrete probability space(Ω, F, P). [9 Marks](ii) Consider the following event,A: Among the first and the third balls, one ball is white, the other is black.Write down A as a subset of the sample space Ω and find its probability, P(A)arrow_forwardLet (Ω, F, P) be a probability space and let X : Ω → R be a randomvariable whose probability density function is given by f(x) = 12 |x|e−|x| forx ∈ R.(i) Find the characteristic function of the random variable X.[8 Marks](ii) Using the result of (i), calculate the first two moments of therandom variable X, i.e., E(Xn) for n = 1, 2. [6 Marks]Total marks 16 (iii) What is the variance of X?arrow_forward
- ball is drawn from one of three urns depending on the outcomeof a roll of a dice. If the dice shows a 1, a ball is drawn from Urn I, whichcontains 2 black balls and 3 white balls. If the dice shows a 2 or 3, a ballis drawn from Urn II, which contains 1 black ball and 3 white balls. Ifthe dice shows a 4, 5, or 6, a ball is drawn from Urn III, which contains1 black ball and 2 white balls. (i) What is the probability to draw a black ball? [7 Marks]Hint. Use the partition rule.(ii) Assume that a black ball is drawn. What is the probabilitythat it came from Urn I? [4 Marks]Total marks 11 Hint. Use Bayes’ rulearrow_forwardLet X be a random variable taking values in (0,∞) with proba-bility density functionfX(u) = 5e^−5u, u > 0.Let Y = X2 Total marks 8 . Find the probability density function of Y .arrow_forwardLet P be the standard normal distribution, i.e., P is the proba-bility measure on R, B(R) given bydP(x) = 1√2πe− x2/2dx.Consider the random variablesfn(x) = (1 + x2) 1/ne^(x^2/n+2) x ∈ R, n ∈ N.Using the dominated convergence theorem, prove that the limitlimn→∞E(fn)exists and find itarrow_forward
- 13) Consider the checkerboard arrangement shown below. Assume that the red checker can move diagonally upward, one square at a time, on the white squares. It may not enter a square if occupied by another checker, but may jump over it. How many routes are there for the red checker to the top of the board?arrow_forward12) The prime factors of 1365 are 3, 5, 7 and 13. Determine the total number of divisors of 1365.arrow_forward11) What is the sum of numbers in row #8 of Pascal's Triangle?arrow_forward
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL