Concept explainers
Consider a directory of classified advertisements that consists of m pages, where m is very large. Suppose that the number of advertisements per page varies and that your only method of finding out how many advertisements there are on a specified page is to count them. In addition, suppose that there are too many pages for it to be feasible to make a complete count of the total number of advertisements and that your objective is to choose a directory advertisement in such a way that each of them has an equal chance of being selected.
a. If you randomly choose a page and then randomly choose an advertisement from that page, would that satisfy your objective? Why or why not?
Let
Step 1. Choose a page at random. Suppose it is page X. Determine n(X) by counting the number of advertisements on page X.
Step 2. “Accept” page X with
Step 3. Randomly choose one of the advertisements on page X.
Call each pass of the algorithm through step 1 an iteration. For instance, if the first randomly chosen page is rejected and the second accepted, then we would have needed 2 iterations of the algorithm to obtain an advertisement.
b. What is the probability that a single iteration of the algorithm results in the acceptance of an advertisement on page i?
c. What is the probability that a single iteration of the algorithm results in the acceptance of an advertisement?
d. What is the probability that the algorithm goes through k iterations, accepting the jth advertisement on page i on the final iteration?
e. What is the probability that the jth advertisement on page i is the advertisement obtained from the algorithm?
f. What is the expected number of iterations taken by the algorithm?
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
A First Course in Probability (10th Edition)
- Was wanting to check if my calculations were correct Suppose 52% of the population has a college degree. If a random sample of size 808 is selected, what is the probability that the proportion of persons with a college degree will be less than 54%? Round to four decimal places. after following the formula I got 0.8724arrow_forwardAt the beginning of each semester, students at the University of Minnesota receive one prepaid copy card that allows them to print from the copiers and printers on campus. The amount of money remaining on the card can be modeled by a linear equation where A represents how much remains on the card (in dollars) and p represents the number of pages that the student has printed. The graph of this linear equation is given below. 100 90 80 70 60 50 40 30 20 10 0 A = Amount on Card ($) 0 200 400 600 800 1000 1200 1400 1600 p = Number of Pages Printed What information does the vertical intercept tell you (represent) for this problem? Be sure to include specific details in your answer -- your answer should have both quantitative and qualitative data to describe the answer in terms of the question.arrow_forwardData management no 2 thanksarrow_forward
- G12 Data Management please help on the first question no 1 belowarrow_forwardTotal marks 14 4. Let X and Y be random variables on a probability space (N, F, P) that take values in [0, ∞). Assume that the joint density function of X and Y on [0, ∞) × [0, ∞) is given by f(x, y) = 2e-2x-y Find the probability P(0 ≤ X ≤ 1,0 ≤ y ≤ 2). (ii) spectively. [6 Marks] Find the the probability density function of X and Y, re- [5 Marks] 111) Are the X and Y independent? Justify your answer! [3 Marks]arrow_forwardTotal marks 17 4. Let (,,P) be a probability space and let X : → R be a ran- dom variable that has Gamma(2, 1) distribution, i.e., the distribution of the random variable X is the probability measure on ((0, ∞), B((0, ∞))) given by (i) dPx(x) = xex dx. Find the characteristic function of the random variable X. [8 Marks] (ii) Using the result of (i), calculate the first three moments of the random variable X, i.e., E(X") for n = 1, 2, 3. Using Markov's inequality involving E(X³), (iii) probability P(X > 10). [6 Marks] estimate the [3 Marks]arrow_forward
- 1. There are 8 balls in an urn, of which 6 balls are red, 1 ball is blue and 1 ball is white. You draw a ball from the urn at random, note its colour, do not return the ball to the urn, and then draw a second ball, note its colour, do not return the ball to the urn, and finally draw a third ball, note its colour. (i) (Q, F, P). Describe the corresponding discrete probability space [7 Marks] (ii) Consider the following event, A: At least one of the first two balls is red.arrow_forward3. Consider the following discrete probability space. Let = {aaa, bbb, ccc, abc, acb, bac, bca, cab, cba}, i.e., consists of 3-letter 'words' aaa, bbb, ccc, and all six possible 3-letter 'words' that have a single letter a, a single letter b, and a single letter c. The probability measure P is given by 1 P(w) = for each weΩ. 9 Consider the following events: A: the first letter of a 'word' is a, B: the second letter of a 'word' is a, C: the third letter of a 'word' is a. answer! Decide whether the statements bellow are true or false. Justify your (i) The events A, B, C are pairwise independent. (ii) The events A, B, C are independent. Total marks 7 [7 Marks]arrow_forwardLet X and Y have the following joint probability density function: fxy(x,y) =1/(x²²), for >>1, y>1 0, otherwise Let U = 5XY and V = 3 x. In all question parts below, give your answers to three decimal places (where appropriate). (a) The non-zero part of the joint probability density function of U and V is given by fu,v(u,v) = A√³uc for some constants A, B, C. Find the value of A. Answer: 5 Question 5 Answer saved Flag question Find the value of B. Answer: -1 Question 6 Answer saved P Flag question (b) The support of (U,V), namely the values of u and vthat correspond to the non-zero part of fu,v(u,v) given in part (a), is given by:arrow_forward
- Total marks 13. 3. There are three urns. Urn I contains 3 blue balls and 5 white balls; urn II contains 2 blue balls and 6 white balls; urn III contains 4 blue balls and 4 white balls. Rolling a dice, if 1 appears, we draw a ball from urn I; if 4 or 5 or 6 appears, we draw a ball from urn II; if 2, or 3 appears, we draw a ball from urn III. (i) What is the probability to draw a blue ball? [7 Marks] (ii) Assume that a blue ball is drawn. What is the probability that it came from Urn I? [6 Marks] Turn over. MA-252: Page 3 of 4arrow_forward3. Consider the discrete probability space with the sample space = {a, b, c, d, e, f, g, h} and the probability measure P given by P(w) for each wEN. Consider the following events: A = {a, c, e, g}, B = {b, c, d, e}, C = = {a, b, d, g}. Decide whether the statements bellow are true or false. Justify your answer! (i) The events A, B, C are pairwise independent. (ii) The events A, B, C are independent. Total marks 6 [6 Marks]arrow_forward2. space Consider the discrete probability space (N, F, P) with the sample N = {W1 W2 W3 W4 W5, W6, W7, W8, W9, W10, W11, W12}, is the power of 2, and the probability measure P is given by 1 P(wi) for each i = 1, 12. 12 Consider the following events: A = {W1, W3, W5, W7, W9, W11}, C = B = {W1, WA, W7, W8, W9, W12}, = {W3, WA, W5, W6, W9, W12}. Decide whether the statements bellow are true or false. Justify your answer! (i) The events A, B, C are pairwise independent. [5 Marks] Total marks 8 (ii) The events A, B, C are independent. [3 Marks]arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL