Chemistry for Engineering Students
4th Edition
ISBN: 9781337398909
Author: Lawrence S. Brown, Tom Holme
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6, Problem 6.16PAE
6.16 Various optical disk drives rely on laser operating at different wavelengths, with shorter wavelengths allowing a higher density of data storage. For each of the following drive types, find the energy of a single photon at the specified wavelength. (a) CD,
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 6 Solutions
Chemistry for Engineering Students
Ch. 6 - describe trace analysis and explain its role in...Ch. 6 - describe waves in terms of frequency, wavelength,...Ch. 6 - Prob. 3COCh. 6 - relate the frequency, wavelength, and amplitude of...Ch. 6 - describe the photoelectric effect by stating what...Ch. 6 - Prob. 6COCh. 6 - • use Planck’s equation to calculate the energy of...Ch. 6 - Prob. 8COCh. 6 - Prob. 9COCh. 6 - • describe similarities and differences between...
Ch. 6 - Prob. 11COCh. 6 - Prob. 12COCh. 6 - • identify an orbital (as 1s, 3p, etc.) from its...Ch. 6 - • list the number of orbitals of each type (1s,...Ch. 6 - • sketch the shapes of s and p orbitals and...Ch. 6 - • rank various orbitals in terms of size and...Ch. 6 - Prob. 17COCh. 6 - Prob. 18COCh. 6 - Prob. 19COCh. 6 - Prob. 20COCh. 6 - Prob. 6.1PAECh. 6 - 6.2 Unlike XRF, AAS cannot be used for...Ch. 6 - Prob. 6.3PAECh. 6 - Prob. 6.4PAECh. 6 - Prob. 6.5PAECh. 6 - Prob. 6.6PAECh. 6 - 6.7 Arrange the following regions of the...Ch. 6 - 6.8 Calculate the wavelength in meters, of...Ch. 6 - 6.9 If a string of decorative lights includes...Ch. 6 - 6.10 Define the term refraction.Ch. 6 - 6.11 Define the term photon.Ch. 6 - 6.12 Find the energy of a photon with each of the...Ch. 6 - 6.13 Place these types of radiation in order of...Ch. 6 - 6.14 For photon with the following energies,...Ch. 6 - Prob. 6.15PAECh. 6 - 6.16 Various optical disk drives rely on laser...Ch. 6 - 6.17 The laser in most supermarket barcode...Ch. 6 - 6.18 Assume that a microwave oven operates at a...Ch. 6 - 6.19 Fill in the blanks below to complete a...Ch. 6 - 6.20 When light with a wavelength of 58.5 nm...Ch. 6 - 6.21 The electron binding energy fur copper metal...Ch. 6 - Prob. 6.22PAECh. 6 - 6.23 Describe how the Bohr model of the atom...Ch. 6 - 6.24 According to the Bohr model of the atom, what...Ch. 6 - 6.25 Define the term ground state.Ch. 6 - 6.26 The figure below depicts the first four...Ch. 6 - 6.27 Refer w the data and energy-Ievel diagram...Ch. 6 - 6.28 A neon atom cmi light at many wavelengths,...Ch. 6 - 6.29 A mercury atom emits light at many...Ch. 6 - 6.30 How did the observation of electron...Ch. 6 - 6.31 Why do we use a wave function to describe...Ch. 6 - 6.32 What are the mathematical origins of quantum...Ch. 6 - Prob. 6.33PAECh. 6 - 6.34 Which of the following represent valid sets...Ch. 6 - 6.35 A particular orbital has n = 4 and l = 2....Ch. 6 - 6.36 Why are there no 2d orbitals?Ch. 6 - 6.34 What is the maximum number of electrons in an...Ch. 6 - 6.38 How many orbitals correspond to each of the...Ch. 6 - Prob. 6.39PAECh. 6 - 6.40 Referring to Figure 6.15, draw a 4p orbitals,...Ch. 6 - 6.41 Consider a 3d orbital. (a) What are the...Ch. 6 - Prob. 6.42PAECh. 6 - 6.43 Define the term spin paired.Ch. 6 - 6.44 On what does the Pauli exclusion principle...Ch. 6 - Prob. 6.45PAECh. 6 - Prob. 6.46PAECh. 6 - 6.47 Depict two ways to place electrons in the 2p...Ch. 6 - 6.48 Write the ground state electron configuration...Ch. 6 - 6.49 Which of these electron configurations are...Ch. 6 - 6.50 From the list of atoms and ions given,...Ch. 6 - Prob. 6.51PAECh. 6 - Prob. 6.52PAECh. 6 - Prob. 6.53PAECh. 6 - Prob. 6.54PAECh. 6 - 6.55 Explain why the s block of the periodic table...Ch. 6 - Prob. 6.56PAECh. 6 - Prob. 6.57PAECh. 6 - Prob. 6.58PAECh. 6 - Prob. 6.59PAECh. 6 - 6.60 Use the electron configurations of the alkali...Ch. 6 - 6.61 Using only a periodic table as a guide,...Ch. 6 - 6.62 Define the term ionization energy....Ch. 6 - 6.63 At which ionization for chlorine would you...Ch. 6 - 6.64 Arrange the following atoms in order of...Ch. 6 - Prob. 6.65PAECh. 6 - 6.66 Which element would you expect to have the...Ch. 6 - Prob. 6.67PAECh. 6 - 6.68 Indicate which species in each pair has the...Ch. 6 - 6.69 Compare the elements Na, B, Al, and C with...Ch. 6 - 6.70 Rank the following in order of decreasing...Ch. 6 - 6.71 Several excited states of the neon atom are...Ch. 6 - 6.72 LED bulbs offer a fairly new lighting...Ch. 6 - 6.73 How much energy could be saved each year by...Ch. 6 - Prob. 6.74PAECh. 6 - Prob. 6.75PAECh. 6 - Prob. 6.76PAECh. 6 - Prob. 6.77PAECh. 6 - Prob. 6.78PAECh. 6 - 6.79 How does the charge of electrons provide some...Ch. 6 - 6.80 Describe how valence electron configurations...Ch. 6 - 6.81 Why is there no element to the immediate...Ch. 6 - 6.82 A particular element has the following values...Ch. 6 - 6.83 The graph below shows the first three...Ch. 6 - 6.84 Which graph correctly depicts the first...Ch. 6 - 6.85 The visible lines in the hydrogen atom...Ch. 6 - 6.86 An excited He+ ion returns to the ground...Ch. 6 - Prob. 6.87PAECh. 6 - Prob. 6.88PAECh. 6 - Prob. 6.89PAECh. 6 - Prob. 6.90PAECh. 6 - 6.91 What is the only noble gas that does not have...Ch. 6 - 6.92 The photoelectric effect can he used to...Ch. 6 - 6.93 A mercury atom is initially in its lowest...Ch. 6 - Prob. 6.94PAECh. 6 - 6.95 A metallic sample is known to be barium,...Ch. 6 - 6.96 When a helium atom absorbs light at 58.44 nm,...Ch. 6 - 6.97 Arrange the members of each of the following...Ch. 6 - 6.98 Arrange the following sets of anions in order...Ch. 6 - 6.99 The photoelectric effect can he used in...Ch. 6 - 6.100 Some spacecraft use ion propulsion engines....Ch. 6 - 6.101 Laser welding is a technique in which a...Ch. 6 - Prob. 6.102PAECh. 6 - 6.103 Atomic absorption spectroscopy is based on...Ch. 6 - 6.104 The red color in fireworks is the result of...Ch. 6 - 6.105 When we say that the existence of atomic...Ch. 6 - 6.106 When Bohr devised his model for the atom,...Ch. 6 - Prob. 6.107PAE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 6.14 For photon with the following energies, calculate the wavelength and identify the region of the spectrum they are from. (a) 3.51020 J, (b) 8.71026 J, (c) 7.11017 J, (d) 5.51027 Jarrow_forwardThe eyes of certain reptiles pass a single visual signal to the brain when the visual receptors are struck by photons of a wavelength of 850 nm. If a total energy of 3.151014 J is required to trip the signal, what is the minimum number of photons that must strike the receptor?arrow_forwardA baseball weighs 142 g. A professional pitcher throws a fast ball at a speed of 100 mph and a curve ball at 80 mph. What wavelengths are associated with the motions of the baseball? If the uncertainty in the position of the ball is 12 wavelength, which ball (fast ball or curve) has a more precisely known position? Can the uncertainty in the position of a curve ball be used to explain why batters frequently miss it?arrow_forward
- 6.99 The photoelectric effect can he used in engineering designs for practical applications. For example, infrared goggles used in night-vision applications have materials that give an electrical signal with exposure to the relatively long wavelength IR light. If the energy needed for signal generation is 3.51020J , what is the wavelength and frequency of light that barely can be detected?arrow_forwardWhat is the wavelength of a proton traveling at a speed of 6.21 km/s? What would be the region of the spectrum for electromagnetic radiation of this wavelength?arrow_forward6.9 If a string of decorative lights includes bulbs with wave-lengths of 480, 580, and 700 mm, what are the frequencies of the lights? Use Figure 6.6 to determine which colors are in the set.arrow_forward
- Light of wavelength 285 nm shines on a piece of magnesium metal. What is the speed of the ejected electron? (Light energy greater than that of the work function of magnesium ends up as kinetic energy of the ejected electron. See Problem 7.76 for the definition of work function and its value for magnesium.)arrow_forwardAs the weapons officer aboard the Srarship Chemistry, it is your duty to configure a photon torpedo to remove an electron from the outer hull of an enemy vessel. You know that the work function (the binding energy of the electron) of the hull of the enemy ship is 7.52 1019 J. a. What wavelength does your photon torpedo need to be to eject an electron? b. You find an extra photon torpedo with a wavelength of 259 nm and fire it at the enemy vessel. Does this photon torpedo do any damage to the ship (does it eject an electron)? c. If the hull of the enemy vessel is made of the element with an electron configura tion of [Ar]4s13d10, what metal is this?arrow_forwardLight of wavelength 345 nm shines on a piece of calcium metal. What is the speed of the ejected electron? (Light energy greater than that of the work function of calcium ends up as kinetic energy of the ejected electron. See Problem 7.75 for the definition of work function and its value for calcium.)arrow_forward
- Investigating Energy Levels Consider the hypothetical atom X that has one electron like the H atom but has different energy levels. The energies of an electron in an X atom are described by the equation E=RHn3 where RH is the same as for hydrogen (2.179 1018 J). Answer the following questions, without calculating energy values. a How would the ground-state energy levels of X and H compare? b Would the energy of an electron in the n = 2 level of H be higher or lower than that of an electron in the n = 2 level of X? Explain your answer. c How do the spacings of the energy levels of X and H compare? d Which would involve the emission of a higher frequency of light, the transition of an electron in an H atom from the n = 5 to the n = 3 level or a similar transition in an X atom? e Which atom, X or H, would require more energy to completely remove its electron? f A photon corresponding to a particular frequency of blue light produces a transition from the n = 2 to the n = 5 level of a hydrogen atom. Could this photon produce the same transition (n = 12 to n = 5) in an atom of X? Explain.arrow_forwardA photon of light produced by a surgical laser has an energy of 3.0271019 J. Calculate the frequency and wavelength of the photon. What is the total energy in 1 mole of photons? What is the color of the emitted light?arrow_forwardA hydrogen atom in the ground stale absorbs a photon whose wavelength is 95.0 nm. The resulting excited atom then emits a photon of 1282 nm. What are the regions of the electromagnetic spectrum for the radiations involved in these transitions? What is the principal quantum number of the final state resulting from the emission from the excited atom?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Quantum Numbers, Atomic Orbitals, and Electron Configurations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Aoi4j8es4gQ;License: Standard YouTube License, CC-BY
QUANTUM MECHANICAL MODEL/Atomic Structure-21E; Author: H to O Chemistry;https://www.youtube.com/watch?v=mYHNUy5hPQE;License: Standard YouTube License, CC-BY