6.93 A mercury atom is initially in its lowest possible (or ground state) energy level. The atom absorbs a photon with a wavelength of 185 nm and then emits a photon with a frequency of 4.924 × 10 14 H Z . At the end of this series of transitions, the atom will still be in an energy level above the ground state. Draw an energy-level diagram for this process and find the energy of this resulting excited state, assuming that we assign a value of E = 0 to the ground state. (This choice of E = 0 is not the usual convention, but it will simplify the calculations you need to do here.)
6.93 A mercury atom is initially in its lowest possible (or ground state) energy level. The atom absorbs a photon with a wavelength of 185 nm and then emits a photon with a frequency of 4.924 × 10 14 H Z . At the end of this series of transitions, the atom will still be in an energy level above the ground state. Draw an energy-level diagram for this process and find the energy of this resulting excited state, assuming that we assign a value of E = 0 to the ground state. (This choice of E = 0 is not the usual convention, but it will simplify the calculations you need to do here.)
6.93 A mercury atom is initially in its lowest possible (or ground state) energy level. The atom absorbs a photon with a wavelength of 185 nm and then emits a photon with a frequency of
4.924
×
10
14
H
Z
. At the end of this series of transitions, the atom will still be in an energy level above the ground state. Draw an energy-level diagram for this process and find the energy of this resulting excited state, assuming that we assign a value of E = 0 to the ground state. (This choice of E = 0 is not the usual convention, but it will simplify the calculations you need to do here.)
Vnk the elements or compounds in the table below in decreasing order of their boiling points. That is, choose 1 next to the substance with the highest bolling
point, choose 2 next to the substance with the next highest boiling point, and so on.
substance
C
D
chemical symbol,
chemical formula
or Lewis structure.
CH,-N-CH,
CH,
H
H 10: H
C-C-H
H H H
Cale
H 10:
H-C-C-N-CH,
Bri
CH,
boiling point
(C)
Сен
(C) B
(Choose
Please help me find the 1/Time, Log [I^-] Log [S2O8^2-], Log(time) on the data table. With calculation steps. And the average for runs 1a-1b. Please help me thanks in advance. Will up vote!
Q1: Answer the questions for the reaction below:
..!! Br
OH
a) Predict the product(s) of the reaction.
b) Is the substrate optically active? Are the product(s) optically active as a mix?
c) Draw the curved arrow mechanism for the reaction.
d) What happens to the SN1 reaction rate in each of these instances:
1. Change the substrate to
Br
"CI
2. Change the substrate to
3. Change the solvent from 100% CH3CH2OH to 10% CH3CH2OH + 90% DMF
4. Increase the substrate concentration by 3-fold.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Quantum Numbers, Atomic Orbitals, and Electron Configurations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Aoi4j8es4gQ;License: Standard YouTube License, CC-BY