Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 25Q
Discuss the conceptual differences between
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In introductory physics laboratories, a typical Cavendish balance for measuring the gravitational constant G uses lead spheres with masses of 1.90 kg and 19.0 g whose centers are separated by about 2.60 cm. Calculate the gravitational force between these spheres, treating each as a particle located at the center of the sphere.
You are standing on the surface of a planet that has sphericalsymmetry and a radius of 5.00 * 10^6 m. The gravitational potential energyU of the system composed of you and the planet is -1.20 * 10+9 Jif we choose U to be zero when you are very far from the planet. Whatis the magnitude of the gravity force that the planet exerts on you whenyou are standing on its surface?
Multiple Choice Questions (MCQ’s):
1. The dimensions of gravitational constant are:
(2) [M*LT*]
(b) [M"LT*] (e) [M'L°T*] (a) [M"L?T*]
2. If V is the gravitational potential on the surface of a thin spherical shell, then the
potential at the centre of the shell is :
(a) Zero
(b) V
(c) V/2
(d) infinite
3. The ratio of the gravitational potential at the surface of a solid sphere to that at the
centre is
(a) :1
(b)
1:2
(c) 2:3
(d) 3:2
4. The ratio of the gravitational potentials at the centre and on the surface of a solid
sphere is:
(a) 히
(c) :1
(b) 1:1
(d) 2:1
5. The value of gravitational potentials energy is:
(a) Always positive
(c) positive or negative
6. The nature of gravitational field is:
(a) Conservative field
(c) pseudo field
7. The gravitational potential on the earth's surface is:
(a) - 6.2 X 10' joule/kg
(b) always negative
(d) always zero
(b) non conservative field
(d) solenoidal field.
(b) 11.2 X 10' joule/kg
Chapter 6 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 6.3 - Suppose you could double the mass of a planet but...Ch. 6.4 - Two satellites orbit the Earth in circular orbits...Ch. 6.4 - Could astronauts in a spacecraft far out in space...Ch. 6.5 - Suppose there were a planet in circular orbit...Ch. 6 - Does an apple exert a gravitational force on the...Ch. 6 - The Suns gravitational pull on the Earth is much...Ch. 6 - Will an object weigh more at the equator or at the...Ch. 6 - Why is more fuel required for a spacecraft to...Ch. 6 - The gravitational force on the Moon due to the...Ch. 6 - How did the scientists of Newton's era determine...
Ch. 6 - If it were possible to drill a hole all the way...Ch. 6 - A satellite in a geosynchronous orbit stays over...Ch. 6 - Which pulls harder gravitationally, the Earth on...Ch. 6 - Would it require less speed to launch a satellite...Ch. 6 - An antenna loosens and becomes detached from a...Ch. 6 - Describe how careful measurements of the variation...Ch. 6 - The Sun is below us at midnight, nearly in line...Ch. 6 - When will your apparent weight be the greatest, as...Ch. 6 - If the Earths mass were double what it actually...Ch. 6 - The source of the Mississippi River is closer to...Ch. 6 - People sometimes ask. What keeps a satellite up in...Ch. 6 - Explain how a runner experiences free fall or...Ch. 6 - If you were in a satellite orbiting the Earth, how...Ch. 6 - Is the centripetal acceleration of Mars in its...Ch. 6 - The mass of the planet Pluto was not known until...Ch. 6 - The Earth moves faster in its orbit around the Sun...Ch. 6 - Keplers laws tell us that a planet moves faster...Ch. 6 - Does your body directly sense a gravitational...Ch. 6 - Discuss the conceptual differences between g as...Ch. 6 - (I) Calculate the force of Earths gravity on a...Ch. 6 - (I) Calculate the acceleration due to gravity on...Ch. 6 - Prob. 3PCh. 6 - Prob. 4PCh. 6 - Prob. 5PCh. 6 - (II) Calculate the effective value of g, the...Ch. 6 - (II) You are explaining to friends why astronauts...Ch. 6 - Prob. 8PCh. 6 - (II) Four 8.5-kg spheres are located at the...Ch. 6 - (II) Two objects attract each other...Ch. 6 - (II) Four masses are arranged as shown in Fig....Ch. 6 - (II) Estimate the acceleration due to gravity at...Ch. 6 - (II) Suppose the mass of the Earth were doubled,...Ch. 6 - Prob. 14PCh. 6 - (II) At what distance from the Earth will a...Ch. 6 - (II) Determine the mass of the Sun using the known...Ch. 6 - (II) Two identical point masses, each of mass M,...Ch. 6 - Prob. 18PCh. 6 - (III) (a) Use the binomial expansion...Ch. 6 - Prob. 20PCh. 6 - Prob. 21PCh. 6 - Prob. 22PCh. 6 - Prob. 23PCh. 6 - Prob. 24PCh. 6 - (II) You know your mass is 65 kg, but when you...Ch. 6 - (II) A 13.0-kg monkey hangs from a cord suspended...Ch. 6 - (II) Calculate the period of a satellite orbiting...Ch. 6 - Prob. 28PCh. 6 - (II) What will a spring scale read for the weight...Ch. 6 - Prob. 30PCh. 6 - (II) What is the apparent weight of a 75-kg...Ch. 6 - (II) A Ferris wheel 22.0 m in diameter rotates...Ch. 6 - Prob. 33PCh. 6 - Prob. 34PCh. 6 - Prob. 35PCh. 6 - (III) An inclined plane, fixed to the inside of an...Ch. 6 - (I) Use Keplers laws and the period of the Moon...Ch. 6 - (I) Determine the mass of the Earth from the known...Ch. 6 - (I) Neptune is an average distance of 4.5109 km...Ch. 6 - (II) Planet A and planet B are in circular orbits...Ch. 6 - (II) Our Sun rotates about the center of our...Ch. 6 - (II) Table 63 gives the mean distance, period, and...Ch. 6 - (II) Determine the mean distance from Jupiter for...Ch. 6 - (II) The asteroid belt between Mars and Jupiter...Ch. 6 - (III) The comet Hale-Bopp has a period of 2400...Ch. 6 - Prob. 46PCh. 6 - (III) The orbital periods and mean orbital...Ch. 6 - (II) What is the magnitude and direction of the...Ch. 6 - (II) (a) What is the gravitational field at the...Ch. 6 - Prob. 50PCh. 6 - How far above the Earths surface will the...Ch. 6 - At the surface of a certain planet, the...Ch. 6 - A certain white dwarf star was once an average...Ch. 6 - What is the distance from the Earths center to a...Ch. 6 - The rings of Saturn are composed of chunks of ice...Ch. 6 - During an Apollo lunar landing mission, the...Ch. 6 - Prob. 57GPCh. 6 - Prob. 58GPCh. 6 - Jupiter is about 320 limes as massive as the...Ch. 6 - The Sun rotates about the center of the Milky Way...Ch. 6 - Prob. 61GPCh. 6 - A satellite of mass 5500 kg orbits the Earth and...Ch. 6 - Show that the rate of change of your weight is...Ch. 6 - Astronomers using the Hubble Space Telescope...Ch. 6 - Suppose all the mass of the Earth were compacted...Ch. 6 - A plumb bob (a mass m hanging on a string) is...Ch. 6 - A geologist searching for oil finds that the...Ch. 6 - Prob. 68GPCh. 6 - A science-fiction tale describes an artificial...Ch. 6 - How long would a day be if the Earth were rotating...Ch. 6 - An asteroid of mass m is in a circular orbit of...Ch. 6 - Newton had the data listed in Table 64, plus the...Ch. 6 - A satellite circles a spherical planet of unknown...Ch. 6 - Prob. 74GPCh. 6 - The gravitational force at different places on...Ch. 6 - Prob. 76GPCh. 6 - Estimate the value of the gravitational constant G...Ch. 6 - Between the orbits of Mars and Jupiter, several...
Additional Science Textbook Solutions
Find more solutions based on key concepts
4. How do gross anatomy and microscopic anatomy differ?
Human Anatomy & Physiology (2nd Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Use the key to classify each of the following described tissue types into one of the four major tissue categori...
Anatomy & Physiology (6th Edition)
Using the pKa values listed in Table 15.1, predict the products of the following reactions:
Organic Chemistry (8th Edition)
Which of the following factors would tend to increase membrane fluidity? A. a greater proportion of unsaturated...
Campbell Biology in Focus (2nd Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Evaluate the gravitational potential energy (in J) between two 4.00 kg spherical steel balls separated by a center-to-center distance of 19.0 cm. (b) Assuming that they are both initially at rest relative to each other in deep space, use conservation of energy to find how fast (in m/s) will they each be traveling upon impact. Each sphere has a radius of 5.50 cm. m/sarrow_forwardTwo 0.60-kgkg basketballs, each with a radius of 19 cmcm , are just touching a) How much energy is required to change the separation between the centers of the basketballs to 1.0 mm ? (Ignore any other gravitational interactions.) b) How much energy is required to change the separation between the centers of the basketballs to 13 mm ? (Ignore any other gravitational interactions.)arrow_forwardTwo homogeneous spheres one of mass 100 kg and other of mass 11.75 kg attract each with the force of 19.6x10^-7 N when kept with their centres 0.2 m apart. Estimate G.arrow_forward
- calculate the gravitational potential due to a thin rod of length l and mass m.arrow_forwardAn object of mass m is launched from a planet of mass M and radius R. a)Derive and enter an expression for the minimum launch speed needed for the object to escape gravity, i.e. to be able to just reach r = ∞. b)Calculate this minimum launch speed (called the escape speed), in meters per second, for a planet of mass M = 6 × 1023 kg and R = 76 × 104 km.arrow_forward(a) Evaluate the gravitational potential energy (in J) between two 9.00 kg spherical steel balls separated by a center-to-center distance of 23.0 cm. -2.349E-8 J (b) Assuming that they are both initially at rest relative to each other in deep space, use conservation of energy to find how fast (in m/s) will they each be traveling upon impact. Each sphere has a radius of 5.50 cm. 10.90 X m/sarrow_forward
- V:53) Using the Hohmann transfer orbit to go from a circular orbit to new circular orbit with three times the radius (with an elliptical orbit in between), is the final speed greater than or less than the initial speed in first circular orbit? By what factor does it differ?arrow_forwardA team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing experiments, one of their tasks is to demonstrate the concept of the escape speed by throwing rocks straight up at various initial speeds. With what minimum initial speed vesc will the rocks need to be thrown in order for them never to "fall" back to the asteroid? Assume that the asteroid is approximately spherical, with an average density ? = 2.67 × 106 g/m3 and volume V =1.71 × 1012 m3. Recall that the universal gravitational constant is G = 6.67 × 10-11 (Nm2)/(kg2).arrow_forward) Several planets possess nearly circular surrounding rings, perhaps composed of material that failed to form a satellite. In addition, many galaxies contain ringlike structures. Consider a homogeneous ring of mass M and radius R. a) What gravitational attraction does it exert on a particle of mass m located a distance x from the center of the ring along its axis? b) Suppose the particle falls from rest as a result of the attraction of the ring of matter. Find an expression for the speed with which it passes through the center of the ring. (a: see notes from class, b: Use the definition of potential energy.)arrow_forward
- A very massive star with an M mass has a geometric shape of a sphere hollow, where the mass is distributed on the surface only with the radius R. Determine the gravitational potential inside (r R), where r is radial distance from the center of the star. (Hint: You can use Gauss's Law to gravitational field).arrow_forwardIIISuppose a large spherical object, such as a planet, with radius R and mass M has a narrow tunnel passing diametrically through it. A particle of mass m is inside the tunnel at a distance x less than or equal to R from thecenter. It can be shown that the net gravitational force on the particlei sdue entirely to the sphere of mass with radius r ≤ ;x there is no netgravitational force from the mass in the spherical shell with r > .x a. Find an expression for the gravitational force on the particle,assuming the object has uniform density. Your expression willbe in terms of ,x R, m, M, and any necessary constants.b. You should have found that the gravitational force is a linear restoring force. Consequently, in the absence ofair resistance, objects in the tunnel will oscillate with SHM. Suppose an in- trepid astronaut exploring a 150-km-diameter, 3.5 X 1 0 kgasteroid discovers a tunnel through the center. If she jumps into the hole, how long will ti take her to fall all the way…arrow_forwardA team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing experiments, one of their tasks is to demonstrate the concept of the escape speed by throwing rocks straight up at various initial speeds. With what minimum initial speed vesc will the rocks need to be thrown in order for them never to "fall" back to the asteroid? Assume that the asteroid is approximately spherical, with an average density p 3.06 x 106 g/m³ and volume V = 3.32 x 1012 m³. Recall that the universal gravitational constant is G : 6.67 x 10-11 N-m²/kg².arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY