Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6, Problem 67GP
A geologist searching for oil finds that the gravity at a certain location is 2 parts in 107 smaller than average. Assume that a deposit of oil is located 2000 m directly below. Estimate the size of the deposit, assumed spherical. Take the density (mass per unit volume) of rock to be 3000 kg/m3 and that of oil to be 800 kg/m3.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A thick-hollow spherical shell made of aluminum (=70 g/cm3) weighs 64.1 N. If the inner diameter of the hollow sphere is ¾ of the outer diameter, (a) what is the diameter of the hollow space inside the sphere? (b) If instead the hollow sphere is made of brass (=8.60 g/cm3), by how much percent would the outer radius of the brass sphere be smaller compared to the aluminum sphere?
As an astute observer walking around on continental crust (granite), you might decide to test the hypothesis
that the Earth is made entirely of granite. You weigh a 1.00 cubic ft piece of granite on your home scale and find
that it weighs 171 lbs. Thus, you determine that the granite has a density of 171 lb/ft. Convert your granite's
density to g/cm.
Surely upvote you.
Chapter 6 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 6.3 - Suppose you could double the mass of a planet but...Ch. 6.4 - Two satellites orbit the Earth in circular orbits...Ch. 6.4 - Could astronauts in a spacecraft far out in space...Ch. 6.5 - Suppose there were a planet in circular orbit...Ch. 6 - Does an apple exert a gravitational force on the...Ch. 6 - The Suns gravitational pull on the Earth is much...Ch. 6 - Will an object weigh more at the equator or at the...Ch. 6 - Why is more fuel required for a spacecraft to...Ch. 6 - The gravitational force on the Moon due to the...Ch. 6 - How did the scientists of Newton's era determine...
Ch. 6 - If it were possible to drill a hole all the way...Ch. 6 - A satellite in a geosynchronous orbit stays over...Ch. 6 - Which pulls harder gravitationally, the Earth on...Ch. 6 - Would it require less speed to launch a satellite...Ch. 6 - An antenna loosens and becomes detached from a...Ch. 6 - Describe how careful measurements of the variation...Ch. 6 - The Sun is below us at midnight, nearly in line...Ch. 6 - When will your apparent weight be the greatest, as...Ch. 6 - If the Earths mass were double what it actually...Ch. 6 - The source of the Mississippi River is closer to...Ch. 6 - People sometimes ask. What keeps a satellite up in...Ch. 6 - Explain how a runner experiences free fall or...Ch. 6 - If you were in a satellite orbiting the Earth, how...Ch. 6 - Is the centripetal acceleration of Mars in its...Ch. 6 - The mass of the planet Pluto was not known until...Ch. 6 - The Earth moves faster in its orbit around the Sun...Ch. 6 - Keplers laws tell us that a planet moves faster...Ch. 6 - Does your body directly sense a gravitational...Ch. 6 - Discuss the conceptual differences between g as...Ch. 6 - (I) Calculate the force of Earths gravity on a...Ch. 6 - (I) Calculate the acceleration due to gravity on...Ch. 6 - Prob. 3PCh. 6 - Prob. 4PCh. 6 - Prob. 5PCh. 6 - (II) Calculate the effective value of g, the...Ch. 6 - (II) You are explaining to friends why astronauts...Ch. 6 - Prob. 8PCh. 6 - (II) Four 8.5-kg spheres are located at the...Ch. 6 - (II) Two objects attract each other...Ch. 6 - (II) Four masses are arranged as shown in Fig....Ch. 6 - (II) Estimate the acceleration due to gravity at...Ch. 6 - (II) Suppose the mass of the Earth were doubled,...Ch. 6 - Prob. 14PCh. 6 - (II) At what distance from the Earth will a...Ch. 6 - (II) Determine the mass of the Sun using the known...Ch. 6 - (II) Two identical point masses, each of mass M,...Ch. 6 - Prob. 18PCh. 6 - (III) (a) Use the binomial expansion...Ch. 6 - Prob. 20PCh. 6 - Prob. 21PCh. 6 - Prob. 22PCh. 6 - Prob. 23PCh. 6 - Prob. 24PCh. 6 - (II) You know your mass is 65 kg, but when you...Ch. 6 - (II) A 13.0-kg monkey hangs from a cord suspended...Ch. 6 - (II) Calculate the period of a satellite orbiting...Ch. 6 - Prob. 28PCh. 6 - (II) What will a spring scale read for the weight...Ch. 6 - Prob. 30PCh. 6 - (II) What is the apparent weight of a 75-kg...Ch. 6 - (II) A Ferris wheel 22.0 m in diameter rotates...Ch. 6 - Prob. 33PCh. 6 - Prob. 34PCh. 6 - Prob. 35PCh. 6 - (III) An inclined plane, fixed to the inside of an...Ch. 6 - (I) Use Keplers laws and the period of the Moon...Ch. 6 - (I) Determine the mass of the Earth from the known...Ch. 6 - (I) Neptune is an average distance of 4.5109 km...Ch. 6 - (II) Planet A and planet B are in circular orbits...Ch. 6 - (II) Our Sun rotates about the center of our...Ch. 6 - (II) Table 63 gives the mean distance, period, and...Ch. 6 - (II) Determine the mean distance from Jupiter for...Ch. 6 - (II) The asteroid belt between Mars and Jupiter...Ch. 6 - (III) The comet Hale-Bopp has a period of 2400...Ch. 6 - Prob. 46PCh. 6 - (III) The orbital periods and mean orbital...Ch. 6 - (II) What is the magnitude and direction of the...Ch. 6 - (II) (a) What is the gravitational field at the...Ch. 6 - Prob. 50PCh. 6 - How far above the Earths surface will the...Ch. 6 - At the surface of a certain planet, the...Ch. 6 - A certain white dwarf star was once an average...Ch. 6 - What is the distance from the Earths center to a...Ch. 6 - The rings of Saturn are composed of chunks of ice...Ch. 6 - During an Apollo lunar landing mission, the...Ch. 6 - Prob. 57GPCh. 6 - Prob. 58GPCh. 6 - Jupiter is about 320 limes as massive as the...Ch. 6 - The Sun rotates about the center of the Milky Way...Ch. 6 - Prob. 61GPCh. 6 - A satellite of mass 5500 kg orbits the Earth and...Ch. 6 - Show that the rate of change of your weight is...Ch. 6 - Astronomers using the Hubble Space Telescope...Ch. 6 - Suppose all the mass of the Earth were compacted...Ch. 6 - A plumb bob (a mass m hanging on a string) is...Ch. 6 - A geologist searching for oil finds that the...Ch. 6 - Prob. 68GPCh. 6 - A science-fiction tale describes an artificial...Ch. 6 - How long would a day be if the Earth were rotating...Ch. 6 - An asteroid of mass m is in a circular orbit of...Ch. 6 - Newton had the data listed in Table 64, plus the...Ch. 6 - A satellite circles a spherical planet of unknown...Ch. 6 - Prob. 74GPCh. 6 - The gravitational force at different places on...Ch. 6 - Prob. 76GPCh. 6 - Estimate the value of the gravitational constant G...Ch. 6 - Between the orbits of Mars and Jupiter, several...
Additional Science Textbook Solutions
Find more solutions based on key concepts
2 Of the uterus, small intestine, spinal cord, and heart, which is/are in the dorsal body cavity?
Anatomy & Physiology (6th Edition)
8. A human maintaining a vegan diet (containing no animal products) would be a:
a. producer
b. primary consume...
Human Biology: Concepts and Current Issues (8th Edition)
Foods packed in plastic for microwaving are a. dehydrated. b. freeze-dried. c. packaged aseptically. d. commerc...
Microbiology: An Introduction
27. Consider the reaction.
Express the rate of the reaction in terms of the change in concentration of each of...
Chemistry: Structure and Properties (2nd Edition)
a. Which compound has the stretching vibration for its carbonyl group at the highest frequency: acetyl chloride...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Neutron stars consist only of neutrons and have unbelievably high densities. A typical mass and radius for a neutron star might be 7.7 x 1028 kg and 1.7 x 103 m. (a) Find the density of such a star. (b) If a dime (V = 2.0 x 10-7 m3) were made from this material, how much would it weight (in pounds)? (a) Number Units (b) Number Units Save for Laterarrow_forwardIt is estimated that the mass of the earth is 5.98 x 1024 kg. Its main radius is 6.38 x 106 m. Find the density of earth in kg/m3 and in lb/ft3. Compare this value to the density of water whose density is 1000 kg/m3.arrow_forwardSince neutron stars consist totally of neutrons, they are extremely massive and have a density that is hard to imagine. A typical radius and mass for a neutron star are 1.30 x 10³ m and 3.60 x 1028 kg respectively. (a) Determine the density of a neutron star. kg/m³ (b) Determine the weight (in pounds) of a penny (V = 360 mm³) if it were made from this material. (Assume 1 lb = 4.448 N.) lbarrow_forward
- Since neutron stars consist totally of neutrons, they are extremely massive and have a density that is hard to imagine. A typical radius and mass for a neutron star are 2.00 x 103 m and 4.00 x 1048 kg respectively. (a) Determine the density of a neutron star. kg/m3 (b) Determine the weight (in pounds) of a penny (V = 360 mm) if it were made from this material. (Assume 1 lb = 4.448 N.) Ibarrow_forwardSince neutron stars consist totally of neutrons, they are extremely massive and have a density that is hard to imagine. A typical radius and mass for a neutron star are 1.95 103 m and 2.60 1028 kg respectively. (a) Determine the density of a neutron star. kg/m3(b) Determine the weight (in pounds) of a penny (V = 360 mm3) if it were made from this material. (Assume 1 lb = 4.448 N.)arrow_forwardThe density of aluminum is 2.7g/cm3. An aluminum plate of uniform thickness is 10 cm length, 20cm wide and weigh 0.270kg. How thickness is the aluminum plate? Express you answer in exponential notation with the proper number of significant digits.arrow_forward
- An automobile tire is shown in the figure below. The tire is made of rubber with a uniform density of 1.10 × 103 kg/m³. The tire can be modeled as consisting of two flat sidewalls and a tread region. Each of th sidewalls has an inner radius of 16.5 cm and an outer radius of 30.5 cm as shown, and a uniform thickness of 0.675 cm. The tread region can be approximated as having a uniform thickness of 2.50 cm (that i its inner radius is 30.5 cm and outer radius is 33.0 cm as shown) and a width of 19.4 cm. What is the moment of inertia (in kg m2) of the tire about an axis perpendicular to the page through its center? " 33.0 cm 16.5 cm Sidewall 30.5 cm Tread Enter a number. find the moment of inertia of the sidewall and the moment of inertia of the tread region. Each can be modeled as a cylinder of nonzero thickness. What is the inner and outer radius for each case? What is the formula for the moment of inertia for a thick-walled cylinder? How can you find the mass of a hollow cylinder?…arrow_forwardRecall that density is massdivided by volume A neutron star is the remnant of certain supernovae (explosions of giant stars). Typically, neutron stars are about 20 km in diameter and have about the same mass as our sun. What is a typical neutron star density in g>cm3?arrow_forward9arrow_forward
- Since neutron stars consist totally of neutrons, they are extremely massive and have a density that is hard to imagine. A typical radius and mass for a neutron star are 1.90 x 10³ m and 2.50 x 1028 kg respectively. (a) Determine the density of a neutron star. | kg/m³ (b) Determine the weight (in pounds) of a penny (V = 360 mm) if it were made from this material. (Assume 1 lb = 4.448 N.) Ilbarrow_forwardHelp with physics review problemarrow_forwardSince neutron stars consist totally of neutrons, they are extremely massive and have a density that is hard to imagine. A typical radius and mass for a neutron star are 1.80 103 m and 3.80 1028 kg respectively. (a) Determine the density of a neutron star.(b) Determine the weight (in pounds) of a penny (V = 360 mm3) if it were made from this material. (Assume 1 lb = 4.448 N.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Components of a Vector (Part 1) | Unit Vectors | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=fwMUELxZ0Pw;License: Standard YouTube License, CC-BY
02 - Learn Unit Conversions, Metric System & Scientific Notation in Chemistry & Physics; Author: Math and Science;https://www.youtube.com/watch?v=W_SMypXo7tc;License: Standard Youtube License