Concept explainers
The Sun rotates about the center of the Milky Way Galaxy (Fig. 6–29) at a distance of about 30,000 light-years from the center (1 ly = 9.5 × 1015 m). If it takes about 200 million years to make one rotation, estimate the mass of our Galaxy. Assume that the mass distribution of our Galaxy is concentrated mostly in a central uniform sphere. If all the stars had about the mass of our Sun (2 × 1030 kg), how many stars would there be in our Galaxy?
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Physics for Scientists and Engineers with Modern Physics
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Applications and Investigations in Earth Science (9th Edition)
Concepts of Genetics (12th Edition)
Cosmic Perspective Fundamentals
Campbell Biology (11th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
- Compute directly the gravitational force on a unit mass at a point exterior to a homogeneous sphere of matter.arrow_forwardShow that for eccentricity equal to one in Equation 13.10 for conic sections, the path is a parabola. Do this by substituting Cartersian coordinates, x and y, for the polar coordinates, r and , and showing that it has the general form for a parabola, x=ay2+by+c .arrow_forwardUsing Figure 13.9, carefull sketch a free body diagram for the case of a simple pendulum hanging at latitude lambda, labeling all forces acting on the point mass,m. Set up the equations of motion for equilibrium, setting one coordinate in the direction of the centripetal accleration (toward P in the diagram), the other perpendicular to that. Show that the deflection angle , defined as the angle between the pendulum string and the radial direction toward the center of Earth, is given by the expression below. What is the deflection angle at latitude 45 degrees? Assume that Earth is a perfect sphere. tan(+)=gg2REtan , where is the angular velocity of Earth.arrow_forward
- An object of mass mm is launched from a planet of mass MM and radius RR. a) Derive and enter an expression for the minimum launch speed needed for the object to escape gravity, i.e. to be able to just reach r=∞. b) Calculate this minimum launch speed (called the escape speed), in meters per second, for a planet of mass M=2.73×1023kg and R=86.2×103km.arrow_forwardApply: Suppose an elephant has a mass of 1,800 kg and a person has a mass of 75 kg. If the strength of gravitational force on the person was 735 N, what would be the gravitational force on the elephant? Assume both the person and elephant are on Earth's surface.) I Since force and mass are proportional, set this up as a proportion/ratio. (mass of elephant) (mass of human) (force on elephant) (force on human) %3D Show your work (to insert math notation, go to the Toolbar and click on Insert - Equation): Answer:arrow_forward(a) (i) Define gravitational field strength and state whether it is a scalar or vector quantity. A mass m is at a height h above the surface of a planet (ii) of mass M and radius R. The gravitational field strength at height h is g. By considering the gravitational force acting on massm, derive an equation from Newton's law of gravitation to express g in terms of M, R, h and the gravitational conșțant G.arrow_forward
- B8arrow_forwardAstronomical observations of our Milky Way galaxy indicate that it has a mass of about 8 x 1011 solar masses. A star orbiting near the galaxy's periphery is 5.6 x 104 light years from its center. (For your calculations, assume that the galaxy's mass is concentrated near its center.) (a) What should the orbital period of that star be? yr (b) If its period is 5.1 x 107 years instead, what is the mass of the galaxy? Such calculations are used to imply the existence of "dark matter" in the universe and have indicated, for example, the existence of very massive black holes at the centers of some galaxies. solar massesarrow_forwardAstronomical observations of our Milky Way galaxy indicate that it has a mass of about 8 ✕ 1011 solar masses. A star orbiting near the galaxy's periphery is 6.0 ✕ 104 light years from its center. (a) What should the orbital period (in y) of that star be? y (b) If its period is 6.9 ✕ 107 y instead, what is the mass (in solar masses) of the galaxy? Such calculations are used to imply the existence of "dark matter" in the universe and have indicated, for example, the existence of very massive black holes at the centers of some galaxies. solar massesarrow_forward
- An object of mass m is released from rest a distance R above the surface of a planet of mass M and radius R. Calculate with which it hits the planet’s surface, v, in m/s, assuming M = 29 × 1026 kg and R = 25 × 102 km.arrow_forwardAstronomical observations of our Milky Way galaxy indicate that it has a mass of about 8 ✕ 1011 solar masses. A star orbiting near the galaxy's periphery is 6.0✕ 104 light years from its center. (a) What should the orbital period (in y) of that star be? y (b) If its period is 5.1✕ 107 y instead, what is the mass (in solar masses) of the galaxy? Such calculations are used to imply the existence of "dark matter" in the universe and have indicated, for example, the existence of very massive black holes at the centers of some galaxies. solar massesarrow_forwardAstronomical observations of our Milky Way galaxy indicate that it has a mass of about 8.0 • 1011 solar masses. A star orbiting on the galaxy’s periphery is about 6.0 • 104 light years from its center. a) What should the orbital period of that star be in years? b) If its period is 6.0 • 107 years instead, what is the mass of the galaxy in solar masses? Such calculations are used to imply the existence of “dark matter” in the universe and have indicated, for example, the existence of very massive black holes at the centers of some galaxies.arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning