Show that the rate of change of your weight is − 2 G m E m r 3 υ If you are travelling directly away from Earth at constant speed υ . Your mass is m , and r is your distance from the center of the Earth at any moment.
Show that the rate of change of your weight is − 2 G m E m r 3 υ If you are travelling directly away from Earth at constant speed υ . Your mass is m , and r is your distance from the center of the Earth at any moment.
Astronomical observations of our Milky Way galaxy indicate that it has a mass of about 8 ✕ 1011 solar masses. A star orbiting near the galaxy's periphery is 5.8 ✕ 104 light years from its center.
(a)
What should the orbital period (in y) of that star be?
y
(b)
If its period is 7.0 ✕ 107 y instead, what is the mass (in solar masses) of the galaxy? Such calculations are used to imply the existence of "dark matter" in the universe and have indicated, for example, the existence of very massive black holes at the centers of some galaxies.
solar masses
Astronomical observations of our Milky Way galaxy indicate that it has a mass of about 8.0 x 1011 solar masses. A star orbiting near the galaxy's periphery is 5.6 x 104 light-years from its center.
(a) What should the orbital period (in y) of that star be?
y
(b) If its period is 5.3 x 107 years instead, what is the mass (in solar masses) of the galaxy? Such calculations are used to imply the existence of other matter, such as a very massive black hole at the center of
the Milky Way.
solar masses
Plaskett's binary system consists of two stars that revolve in a circular orbit about a center of mass midway
between them. This statement implies that the masses of the two stars are equal (see figure below). Assume
the orbital speed of each star is v| = 225 km/s and the orbital period of each is 11.6 days. Find the mass M
of each star. (For comparison, the mass of our Sun is 1.99 x 1030 kg.)
M
XCM
M
Part 1 of 3 - Conceptualize
From the given data, it is difficult to estimate a reasonable answer to this problem without working through
the details and actually solving it. A reasonable guess might be that each star has a mass equal to or slightly
larger than our Sun because fourteen days is short compared to the periods of all the Sun's planets.
Part 2 of 3 - Categorize
The only force acting on each star is the central gravitational force of attraction which results in a centripetal
acceleration. When we solve Newton's second law, we can find the unknown mass in terms of the variables…
Chapter 6 Solutions
Physics for Scientists and Engineers with Modern Physics
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.