(a)
Interpretation: Net ionic equation for the given reaction should be determined.
Concept introduction:
Ionic equation is an equation in which ions are explicitly shown.
Spectator ions are the ion that appears unchanged on both sides of a reaction arrow.
Net ionic equation is the chemical equation for a reaction which lists only those species participating in the reaction.
To write the net ionic equation, steps mentioned below must be followed.
- 1. Write the balanced molecular equation
- 2. Write the ionic equation showing the strong electrolytes completely dissociated into cations and anions.
- 3. Cancel the spectator ions on both sides of the ionic equation.
- 4. Check that charges and number of atoms are balanced in the net ionic equation.
(b)
Interpretation: Net ionic equation for the given reaction should be determined.
Concept introduction:
Ionic equation is an equation in which ions are explicitly shown.
Spectator ions are the ion that appears unchanged on both sides of a reaction arrow.
Net ionic equation is the chemical equation for a reaction which lists only those species participating in the reaction.
To write the net ionic equation, steps mentioned below must be followed.
- 1. Write the balanced molecular equation
- 2. Write the ionic equation showing the strong electrolytes completely dissociated into cations and anions.
- 3. Cancel the spectator ions on both sides of the ionic equation.
- 4. Check that charges and number of atoms are balanced in the net ionic equation.
(c)
Interpretation: Net ionic equation for the given reaction should be determined.
Concept introduction:
Ionic equation is an equation in which ions are explicitly shown.
Spectator ions are the ion that appears unchanged on both sides of a reaction arrow.
Net ionic equation is the chemical equation for a reaction which lists only those species participating in the reaction.
To write the net ionic equation, steps mentioned below must be followed.
- 1. Write the balanced molecular equation
- 2. Write the ionic equation showing the strong electrolytes completely dissociated into cations and anions.
- 3. Cancel the spectator ions on both sides of the ionic equation.
- 4. Check that charges and number of atoms are balanced in the net ionic equation.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
FUND.OF GEN CHEM CHAP 1-13 W/ACCESS
- Given the equation below, determine which statement is incorrect. 4C(s) + 6H2(g) + O2(g) → 2C2H5OH(1) AH°=555.4 kJ A) If the equation above is multiplied by two, AH° = - 1110.8 kJ B) For every 0.5 mol of O2, AH° = -277.7 kJ If the state of ethanol changes from the liquid state to the gas state, the value for AH° no loner applies. D) The value of 571.1 kJ applies to one mole of liquid ethanol. E) If the equation above is reversed, AH° = + 555.4 kJarrow_forwardConsider the reaction A + 2B ----> C. If the molar mass of C is twice the molar mass of A, what mass of C is produced by the complete reaction of 10.0 g A?(a) 10.0 g(b) 30.0 g(c) 60.0 garrow_forwardPotassium superoxide, KO2, is used in rebreathing masks to generate oxygen according to the reaction below. If the mask contains 0.250 mol KO2 and 0.200 mol water, what is the limiting reagent? How many moles of excess reactant will there be once the reaction is complete? 4 KO2(s) + 2 H2O(ℓ) → 4 KOH(s) + 3 O2(g)arrow_forward
- In the electrolysis of aqueous sodium bromide, there are two possible anodic reactions: *2H2O(l) ——-> 02(g) + 4H+(aq) + 4e–, E° = 1.23V2Br–(aq) ——–> Br2(g) + 2e-2, E° = 1.08 VWhich reaction occurs at anode and why?arrow_forwardIdentify the oxidized reactant, the reduced reactant, the oxidizing agent, and the reducing agent in the following reactions:arrow_forwardA certain first order reaction has the rate law Rate = k[A] with k=0.0068 sec-1. If the initial concentration of A is 0.75 M, what will be the concentration of A after 1 minute? What is the half-life for this reaction? How much time will it take for 75% of A to react? How much A will be left after the passage of three half-lives? What is the initial rate of the reaction?arrow_forward
- The reaction quotient is Q=1.6×10-26 Part B What pH is needed to produce this value of Q if the concentration and pressure values are [Br2]=2.50×10−4M , [Br−]=11.65M, [SO42−]=9.50M, and PSO2=3.50×10−5atm ? Express your answer numerically to two decimal places.arrow_forwardNonearrow_forwardDirect methanol fuel cells (DMFCS) have shown some promise as a viable option for providing "green" energy to small electrical devices. Calculate E° for the reaction that takes place in DMFCS: CH3OH(I) + 3/2 02(g) → CO2(g) + 2 H20(1) Use the following values. AG°H,0(1) = -237 kJ/mol AG°O2(g) = 0 kJ/mol AG°CO2(9) = -394 kJ/mol AG°CH3OH(I) = -166 kJ/mol. E° = Varrow_forward
- Use the following thermodynamic information to calculate ASn for the combustion of rxn acetylene, C,H,. C2H2(g) + 3 02(9) → 2 CO2(9) + 2 H2O(g) J AS rxn mol K (R) J Substance S° mol K C,H,() 201 0,9) 205 Co,(G) 214 H,O(g) 70.0arrow_forwardFor the following reaction: HNO3 H2SO4 NO2 NO2 NO2 10% 8% 82% 1. Write a reasonable mechanism, using curved arrow notation to show the flow of electrons, for the formation of all three products. Your answer should include all important resonance structures. 2. Using the mechanism and resonance structures, provide an explanation for the product ratios shown.arrow_forwardFor the following reaction X + YA + B at 300 K, it is found equilibrium constant equal to 10. Therefore, AG & AGⓇ of the reaction at 300 K respectively are - Answer barrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON