EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5.1, Problem 4E
A horizontal wire with a mass per unit length of 0.2 kg/m carries a current of 4 A in the +x direction. If the wire is placed in a uniform magnetic flux density B, what should the direction and minimum magnitude of B be in order to magnetically lift the wire vertically upward? [Hint: The acceleration due to gravity isg = −
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question Three: Magnetic Force between wires.
Three long parallel wires are 5 cm from one another. (Looking along them, they are at three
corners of an equilateral triangle.) The current in each wire is 10.00 A, but its direction in wire M
is opposite to that in wires N and P. Determine the magnetic force per unit length on each wire
due to the other two.
M
sem
5cm
Two long, parallel conductors, separated by 14.0 cm, carry currents in the same direction. The first wire carries a current I, = 7.00 A, and the second carries I, = 8.00 A. (See figure below. Assume
the conductors lie in the plane of the page.)
I2
(a) What is the magnetic field created by I, at the location of I,?
10e-5
magnitude
What is the equation giving the magnetic field of a long, straight, current-carrying wire? T
direction
in the +z direction
Two long, parallel conductors, separated by 14.0 cm, carry currents in the same direction. The first wire carries a current I
= 4.00 A, and the second carries 1₂ = 8.00 A. (See figure below. Assume the conductors lie in the plane of the page.)
1₂
#
(a) What is the magnetic field created by I, at the location of I?
magnitude
T
direction
Select--
v
(b) What is the force per unit length exerted by I, on 1₂?
magnitude
N/m
direction
Select-
(c) What is the magnetic field created by I₂ at the location of 1₁?
magnitude
direction -Select--
(d) What is the force per length exerted by 1₂ on 1₁?
magnitude
N/m
direction -Select--
Chapter 5 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 5.1 - What are the major differences between the...Ch. 5.1 - Prob. 2CQCh. 5.1 - How is the direction of the magnetic moment of a...Ch. 5.1 - If one of two wires of equal length is formed into...Ch. 5.1 - An electron moving in the positive x direction...Ch. 5.1 - A proton moving with a speed of 2 106 m/s through...Ch. 5.1 - A charged particle with velocity u is moving in a...Ch. 5.1 - A horizontal wire with a mass per unit length of...Ch. 5.1 - A square coil of 100 turns and 0.5 m long sides is...Ch. 5.2 - Two infinitely long parallel wires carry currents...
Ch. 5.2 - Devise a right-hand rule for the direction of the...Ch. 5.2 - What is a magnetic dipole? Describe its magnetic...Ch. 5.2 - Prob. 6ECh. 5.2 - A wire carrying a current of 4 A is formed into a...Ch. 5.2 - Prob. 8ECh. 5.3 - What are the fundamental differences between...Ch. 5.3 - Prob. 9CQCh. 5.3 - Compare the utility of applying the BiotSavart law...Ch. 5.3 - Prob. 11CQCh. 5.3 - A current I flows in the inner conductor of a long...Ch. 5.3 - The metal niobium becomes a superconductor with...Ch. 5.5 - What are the three types of magnetic materials and...Ch. 5.5 - What causes magnetic hysteresis in ferromagnetic...Ch. 5.5 - Prob. 14CQCh. 5.5 - The magnetic vector M is the vector sum of the...Ch. 5.6 - With reference to Fig. 5-24, determine the single...Ch. 5.7 - Prob. 15CQCh. 5.7 - What is the difference between self-inductance and...Ch. 5.7 - Prob. 17CQCh. 5.7 - Use Eq. (5.89) to obtain an expression for B at a...Ch. 5 - An electron with a speed of 8 106 m/s is...Ch. 5 - When a particle with charge q and mass m is...Ch. 5 - The circuit shown in Fig. P5.3 uses two identical...Ch. 5 - The rectangular loop shown in Fig. P5.4 consists...Ch. 5 - In a cylindrical coordinate system, a 2 m long...Ch. 5 - Prob. 6PCh. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - The loop shown in Fig. P5.9 consists of radial...Ch. 5 - An infinitely long, thin conducting sheet defined...Ch. 5 - An infinitely long wire carrying a 25 A current in...Ch. 5 - Prob. 12PCh. 5 - Prob. 13PCh. 5 - Prob. 14PCh. 5 - A circular loop of radius a carrying current I1 is...Ch. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Three long, parallel wires are arranged as shown...Ch. 5 - A square loop placed as shown in Fig. P5.20 has 2...Ch. 5 - Prob. 21PCh. 5 - Prob. 22PCh. 5 - Repeat Problem 5.22 for a current density J=zJ0er.Ch. 5 - In a certain conducting region, the magnetic field...Ch. 5 - Prob. 25PCh. 5 - Prob. 26PCh. 5 - Prob. 27PCh. 5 - A uniform current density given by J=zj0 (A/m2)...Ch. 5 - A thin current element extending between z = L/2...Ch. 5 - In the model of the hydrogen atom proposed by Bohr...Ch. 5 - Iron contains 8.5 1028 atoms/m3. At saturation,...Ch. 5 - The xy plane separates two magnetic media with...Ch. 5 - Given that a current sheet with surface current...Ch. 5 - In Fig. P5.34, the plane defined by x y = 1...Ch. 5 - The plane boundary defined by z = 0 separates air...Ch. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - A solenoid with a length of 20 cm and a radius of...Ch. 5 - Prob. 39PCh. 5 - The rectangular loop shown in Fig. P5.40 is...Ch. 5 - Determine the mutual inductance between the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A magnetic pole face has a rectangular section having dimensions 200 mm by 100 mm. If the total flux emerging from the pole is 150 µWb. a) If the emerging flux of the pole is changed to 100µWb what will be the resultant density?c) When the dimensions of the magnetic pole are changed to 10m and 5m what will be the new density?d) What would happen if the magnetic pole is changed to square?arrow_forwardAs shown in the figure, two parallel conductors carry current in opposite directions. The current passing through one of the conductors is 10 A. If point A is the midpoint of the distance between the wires, point C is d/2 to the right of the wire carrying 10 A current. The distance d is given as 18 cm. If the current I is set so that the magnetic field at point C is zero, find the current I value and the magnetic field value at A.arrow_forwardMf...arrow_forward
- A thin conducting wire is bent into the shape shown in the figure. The circular portion of the wire has radius R. The wire is in the plane of the screen and carries a current I. R (a) What is the direction of the magnetic field at the center of the loop? O to the left O to the right O upward O downward O into the screen O out of the screen (b) Find an expression for the magnitude of the magnetic field at the center of the loop. (Use the following as necessary: R, I, and Ho. Do not substitute numerical values; use variables only.) B =arrow_forward4. A given magnetic circuit has a magnetic field intensity of 400 AT/m. If the length of the magnetic path is doubled maintaining the same magnetomotive force, how much is the new magnetic field intensity?arrow_forwardA ten-turn solenoid has a ferromagnetic core with a relative permeability of 10,000. The length of the solenoid is l=10 cm and its cross section area is A=1 cm2. The amount of current driving the solenoid is 0.1 A. Determine the magnetic flux intensity H in the core. Provide your answer in A/m. Round off to your answer to one decimal.arrow_forward
- can you do this question for me?arrow_forwardConsider an infinite straight wire that carries a current /₁. There is a rectangular loop, whose long sides are parallel to the wire and carries a current /2. What are the magnitude and direction of the force on the rectangular loop due to the magnetic field on the wire? 10 barrow_forwardA ring of ferromagnetic material has a rectangular section. The inner diameter is 15 cm.The outer diameter is 24 cm. And the thickness is 5 cm. There is a coil of 500 turns wound onthe ring. When the coil has a current of 10 A, the flux in the core is 0.0007 Wb. Theaverage length of the ring is Ln=0.66m Determine:a) The magnetomotive force.b) The intensity of the magnetic field and the flux density.c) Reluctance, permeability and relative permeability.arrow_forward
- A copper wire carries a current from west to east. Assume the magnetic field of the earth at this location to be horizontal and directed from south to north with a magnitude of 5.0E-5 T. How much current would make the magnetic force on the wire equal in magnitude to the gravitational force on the wire for a length of 40 m of wire? The density of copper is 8.92 x103 kg/m3 and the cross-sectional area of the wire is 6.0E-6 m2. Give your answer in amperes, correct to three decimal places. Answer:arrow_forwardAsap please..arrow_forwardProblem-3: Figure shows the crosssection of a long straight wire of radius R that carries a uniformly distributed current i directly out of the page. Current is uniformly distributed about the center of the wire, so the magnetic field B that it produces must be cylindrically symmetrical. To find the magnetic field inside the wire we draw an amperian loop of radius r as shown in the Figure. In order to determine B, inside the wire first one should determine iene . (a)- Determine iene. (b)- Find B inside the wire by using Ampers Law. (c)- Find B outside of the wire by using Ampers Law. (d)- Draw a graph for the Magnetic field from zero up to 3R. Wire ds surface -Amperian looparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY