EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5.5, Problem 14CQ
To determine
The description of a magnetization curve, and the difference between the magnetization curves of hard and soft ferromagnetic materials.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
electromagnatic field
i need the answer quickly
Explain the hysteresis that can be found in materials due to force, magnetic and electrical subjection (give an example on two different materials)
high carbon
stainless steel.
Chapter 5 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 5.1 - What are the major differences between the...Ch. 5.1 - Prob. 2CQCh. 5.1 - How is the direction of the magnetic moment of a...Ch. 5.1 - If one of two wires of equal length is formed into...Ch. 5.1 - An electron moving in the positive x direction...Ch. 5.1 - A proton moving with a speed of 2 106 m/s through...Ch. 5.1 - A charged particle with velocity u is moving in a...Ch. 5.1 - A horizontal wire with a mass per unit length of...Ch. 5.1 - A square coil of 100 turns and 0.5 m long sides is...Ch. 5.2 - Two infinitely long parallel wires carry currents...
Ch. 5.2 - Devise a right-hand rule for the direction of the...Ch. 5.2 - What is a magnetic dipole? Describe its magnetic...Ch. 5.2 - Prob. 6ECh. 5.2 - A wire carrying a current of 4 A is formed into a...Ch. 5.2 - Prob. 8ECh. 5.3 - What are the fundamental differences between...Ch. 5.3 - Prob. 9CQCh. 5.3 - Compare the utility of applying the BiotSavart law...Ch. 5.3 - Prob. 11CQCh. 5.3 - A current I flows in the inner conductor of a long...Ch. 5.3 - The metal niobium becomes a superconductor with...Ch. 5.5 - What are the three types of magnetic materials and...Ch. 5.5 - What causes magnetic hysteresis in ferromagnetic...Ch. 5.5 - Prob. 14CQCh. 5.5 - The magnetic vector M is the vector sum of the...Ch. 5.6 - With reference to Fig. 5-24, determine the single...Ch. 5.7 - Prob. 15CQCh. 5.7 - What is the difference between self-inductance and...Ch. 5.7 - Prob. 17CQCh. 5.7 - Use Eq. (5.89) to obtain an expression for B at a...Ch. 5 - An electron with a speed of 8 106 m/s is...Ch. 5 - When a particle with charge q and mass m is...Ch. 5 - The circuit shown in Fig. P5.3 uses two identical...Ch. 5 - The rectangular loop shown in Fig. P5.4 consists...Ch. 5 - In a cylindrical coordinate system, a 2 m long...Ch. 5 - Prob. 6PCh. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - The loop shown in Fig. P5.9 consists of radial...Ch. 5 - An infinitely long, thin conducting sheet defined...Ch. 5 - An infinitely long wire carrying a 25 A current in...Ch. 5 - Prob. 12PCh. 5 - Prob. 13PCh. 5 - Prob. 14PCh. 5 - A circular loop of radius a carrying current I1 is...Ch. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Three long, parallel wires are arranged as shown...Ch. 5 - A square loop placed as shown in Fig. P5.20 has 2...Ch. 5 - Prob. 21PCh. 5 - Prob. 22PCh. 5 - Repeat Problem 5.22 for a current density J=zJ0er.Ch. 5 - In a certain conducting region, the magnetic field...Ch. 5 - Prob. 25PCh. 5 - Prob. 26PCh. 5 - Prob. 27PCh. 5 - A uniform current density given by J=zj0 (A/m2)...Ch. 5 - A thin current element extending between z = L/2...Ch. 5 - In the model of the hydrogen atom proposed by Bohr...Ch. 5 - Iron contains 8.5 1028 atoms/m3. At saturation,...Ch. 5 - The xy plane separates two magnetic media with...Ch. 5 - Given that a current sheet with surface current...Ch. 5 - In Fig. P5.34, the plane defined by x y = 1...Ch. 5 - The plane boundary defined by z = 0 separates air...Ch. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - A solenoid with a length of 20 cm and a radius of...Ch. 5 - Prob. 39PCh. 5 - The rectangular loop shown in Fig. P5.40 is...Ch. 5 - Determine the mutual inductance between the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- how does the electrostatic discharge occur in the following situation? explain with suitable mathematical substantiation a. Insulator surface are rubbing together. b.Insulator surface are pulling apart.arrow_forwardExplain the difference between magnetic and nonmagnetic materials and give example of each.arrow_forward6) a) Current is generally defined with respect to ...b) Current in a wire is defined with respect to ...c) Derive how much current flows through a closed surface in the magnetostatic case. d) Derive magnetic flux through a closed surface for a non-magnetostatic case.arrow_forward
- Explain the hysteresis that can be found in materials due to force, magnetic and electrical subjection (give an example on two different materials below) show and explain the hysteresis curves for these materials. 1)High carbon steel 2)Cast ironarrow_forwardExplain the following. A. Magnetic Field Strength B. Boundary Conditionsarrow_forwardThese are questions about magnetic properties of a material: 1. How are carrier concentration and mobility calculated measured for materials?2. What is the Gouy’s method to measure magnetic susceptibility?3. What are the limitations in the electrical and magnetic measurements in materials?arrow_forward
- The applied MMF to a simple magnetic circuit is 350AT. It was found that the resulting magnetic field denstiy is 0.7 Wb/m². The average length of this magnetic circuit is 1.64ft and its cross sectional area is 4cm². What is the reluctance (in AT/Wb) of the magnetic material of the core?arrow_forwardA ferromagnetic core with a relative permeability of 1500 is shown in the following figure. The depth of the core is 5 cm. Because of fringing effects, the effective area of the air gaps is 5 percent larger than their physical size. If there are 300 turns in the coil wrapped around the center leg of the core, and if the current in the coil is 1.25 A, find the magnetic flux and the field density in all three legs of the core, as well as the magnetic flux and flux density in the two air gaps.arrow_forwardA 0.5-m length of wire carries a 10-A current perpendicular to a magnetic field. Determine the magnetic flux density needed so that the force on the wire is 3 N.arrow_forward
- A ferromagnetic core is shown below. The depth of the core is 5 cm. The other dimensions of the core are as shown in the figure. Find the value of the current that will produce a flux of 0.003 Wb. With this current, what is the flux density at the top of the core? What is the flux density at the right side of the core? Assume that the relative permeability of the core is 1000. 1. - 10 cm--- - 20 cm - 15 cm 500 tums 15 cm 15 cm [1.21 A, 0.4 T, 1.2 T]arrow_forwardShow Complete Solution.arrow_forwardFigure 1 shows a ring formed with two different materials – cast steel and mild steel. Mild steel has a mean length of 400 mm and an area of 500 mm². Cast steel has a mean length of 300 mm and an area of 312.5 mm2. The magnetisation curve for mild steel and cast steel is shown in Figure 2. Find the total MMF required to cause a flux of 500 µWb in the magnetic circuit. Determine also the total circuit reluctance. 1.8 Cașt steel Cast-steel 1.6 Silicon iron 1.4 Mild steel 1.2 1.0 0.6 Mild stel Cast iron 0.6 Figure 1: Ring arrangement 0.4 0.2 3000 4000 Magnetic field strength, H(A/m) 1000 2000 5000 600ỘI 7000 Figure 2: Magnetization Curve MMF = AT Reluctance = x 10* ΑT/Wb Flux density, B(T)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
8.02x - Lect 21 - Magnetic Materials, Dia- Para- & Ferromagnetism; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=1xFRtdN5IJA;License: Standard Youtube License