EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 6P
(a)
To determine
The torque acting on the coil.
(b)
To determine
The angle
(c)
To determine
The angle
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A magnetic circuit consists of silicon steel 3,000 permeability, of 10 cm length and
a cross section of 1.5 sq. cm and an air gap of the same cross section and of 2 cm
length. A 1/2 ampere current flows through the 5,000-turn coil. What is the field
intensity at the air gap?
a. in terms SI unit
b. in terms of CGS unit
A ring of ferromagnetic material has a rectangular section. The inner diameter is 15 cm.The outer diameter is 24 cm. And the thickness is 5 cm. There is a coil of 500 turns wound onthe ring. When the coil has a current of 10 A, the flux in the core is 0.0007 Wb. Theaverage length of the ring is Ln=0.66m Determine:a) The magnetomotive force.b) The intensity of the magnetic field and the flux density.c) Reluctance, permeability and relative permeability.
Rotating
Choose...
Magnetic Field
Mutual
Choose...
inductance
Chapter 5 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 5.1 - What are the major differences between the...Ch. 5.1 - Prob. 2CQCh. 5.1 - How is the direction of the magnetic moment of a...Ch. 5.1 - If one of two wires of equal length is formed into...Ch. 5.1 - An electron moving in the positive x direction...Ch. 5.1 - A proton moving with a speed of 2 106 m/s through...Ch. 5.1 - A charged particle with velocity u is moving in a...Ch. 5.1 - A horizontal wire with a mass per unit length of...Ch. 5.1 - A square coil of 100 turns and 0.5 m long sides is...Ch. 5.2 - Two infinitely long parallel wires carry currents...
Ch. 5.2 - Devise a right-hand rule for the direction of the...Ch. 5.2 - What is a magnetic dipole? Describe its magnetic...Ch. 5.2 - Prob. 6ECh. 5.2 - A wire carrying a current of 4 A is formed into a...Ch. 5.2 - Prob. 8ECh. 5.3 - What are the fundamental differences between...Ch. 5.3 - Prob. 9CQCh. 5.3 - Compare the utility of applying the BiotSavart law...Ch. 5.3 - Prob. 11CQCh. 5.3 - A current I flows in the inner conductor of a long...Ch. 5.3 - The metal niobium becomes a superconductor with...Ch. 5.5 - What are the three types of magnetic materials and...Ch. 5.5 - What causes magnetic hysteresis in ferromagnetic...Ch. 5.5 - Prob. 14CQCh. 5.5 - The magnetic vector M is the vector sum of the...Ch. 5.6 - With reference to Fig. 5-24, determine the single...Ch. 5.7 - Prob. 15CQCh. 5.7 - What is the difference between self-inductance and...Ch. 5.7 - Prob. 17CQCh. 5.7 - Use Eq. (5.89) to obtain an expression for B at a...Ch. 5 - An electron with a speed of 8 106 m/s is...Ch. 5 - When a particle with charge q and mass m is...Ch. 5 - The circuit shown in Fig. P5.3 uses two identical...Ch. 5 - The rectangular loop shown in Fig. P5.4 consists...Ch. 5 - In a cylindrical coordinate system, a 2 m long...Ch. 5 - Prob. 6PCh. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - The loop shown in Fig. P5.9 consists of radial...Ch. 5 - An infinitely long, thin conducting sheet defined...Ch. 5 - An infinitely long wire carrying a 25 A current in...Ch. 5 - Prob. 12PCh. 5 - Prob. 13PCh. 5 - Prob. 14PCh. 5 - A circular loop of radius a carrying current I1 is...Ch. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Three long, parallel wires are arranged as shown...Ch. 5 - A square loop placed as shown in Fig. P5.20 has 2...Ch. 5 - Prob. 21PCh. 5 - Prob. 22PCh. 5 - Repeat Problem 5.22 for a current density J=zJ0er.Ch. 5 - In a certain conducting region, the magnetic field...Ch. 5 - Prob. 25PCh. 5 - Prob. 26PCh. 5 - Prob. 27PCh. 5 - A uniform current density given by J=zj0 (A/m2)...Ch. 5 - A thin current element extending between z = L/2...Ch. 5 - In the model of the hydrogen atom proposed by Bohr...Ch. 5 - Iron contains 8.5 1028 atoms/m3. At saturation,...Ch. 5 - The xy plane separates two magnetic media with...Ch. 5 - Given that a current sheet with surface current...Ch. 5 - In Fig. P5.34, the plane defined by x y = 1...Ch. 5 - The plane boundary defined by z = 0 separates air...Ch. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - A solenoid with a length of 20 cm and a radius of...Ch. 5 - Prob. 39PCh. 5 - The rectangular loop shown in Fig. P5.40 is...Ch. 5 - Determine the mutual inductance between the...
Knowledge Booster
Similar questions
- 10 Given a common magnetic core whose length is 100 cm, its cross-sectional area is 25 cm square. The relative permeability of the core material is 5000. Two coils are tightly wound on the core. N1 =1000 turns and N2 = 500 turns. The self-inductance of coil N1 will be: [ 7.85 m H 15.7 m H 3.927 m H 5.17 mHarrow_forwardA coil of resistance 100W is placed in a magnetic field of 1mW. The coil has 100 turns and a galvanometer of 400W resistance is connected in series with it. Find the average emf and the current if the coil is move in 1/10th second from the given field to a field of 0.2mWb.arrow_forwardAn electromagnet shown below has a cross section area of 10 cm2 with a mean length of iron path of 100cm and mean length of airgap is 0.4cm . It is excited by a coil of 1000 turns of conductor windings. When a current of 1A is provided to the coil and the relative permeability of iron is 1300, then find the magnetic flux in the circuit. Select one: Oa. 1.25Wb O b. None of these Oc.0.00027Wb O d. 027W.arrow_forward
- Consider the magnetic circuit shown below. The primary coil has N1=400 turns, and the secondary coil has N2=800 turms. The total length of the core (shown in red) is 4 cm. The core has a uniform cross section 2 cm2 , magnetic permeability 800. Calculate the mutual inductance of the coils L12 and L21 . Enter your answer in the form below. N1 N2arrow_forwardA coil consists of 100 turns of wire in shape of circle placed in the y-z plane. The loop has an area of 1m2 Two magnetic fields linking the surface of the loop: The first one is given by: B1 = –10t² The second one is B2 = 20isin(2w)t Find vtr emf Select one: O a. vtr 2000t – 4000.w.cos(2w)t emf O b. 0 O c. vtr emf = -20t + 40.w.cos(2w)t O d. vtr -2000t + 4000.w. cos(2w)t emf O e. vtr emf 20t – 40.w.cos(2w)t O f. vtr = 20t emf O g. vemf - 40.w.cos(2w)t %3Darrow_forwardPP15arrow_forward
- Choose the correct answer. *Please answer it ASAP if you canarrow_forwardA magnetic field of 2 x 102 T acts at right angles to a coil of area 100 cm? with 50 turns. The average induced emf in the coil is 0.1 V when it is removed from the field in t sec. The value of t is?arrow_forwardThe magnitude of the induced emf in a coil due to the effect of a variable magnetic field on its length is numerically equal to the product of length of the coil and the rate of change of the linkage flux on it. true / falsearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,