EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 3P
The circuit shown in Fig. P5.3 uses two identical springs to support a 10 cm long horizontal wire with a mass of 20 g. In the absence of a magnetic field, the weight of the wire causes the springs to stretch a distance of 0.2 cm each. When a uniform magnetic field is turned on in the region containing the horizontal wire, the springs are observed to stretch an additional 0.5 cm each. What is the intensity of the magnetic flux density B? The force equation for a spring is F = kd, where k is the spring constant and d is the distance it has been stretched.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A magnetic circuit consists of silicon steel 3,000 permeability, of 10 cm length and
a cross section of 1.5 sq. cm and an air gap of the same cross section and of 2 cm
length. A 1/2 ampere current flows through the 5,000-turn coil. What is the field
intensity at the air gap?
a. in terms SI unit
b. in terms of CGS unit
The force exerted on the length element dl at point P in the circular conductive ring in the figure,
Please choose one:
a.It is tangent to the ring on the note P.
b.It's inward throughout the OP.
C.It is outward throughout the OP.
D.It is in the direction of the magnetic field.
Calculate the magnitude of the magnetic
force on a 160-m length of straight wire
stretched between two towers carrying a
150-A current. The earth's magnetic field of
5.0x10-5 T makes an angle of 65 degrees
with the wire.
Chapter 5 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 5.1 - What are the major differences between the...Ch. 5.1 - Prob. 2CQCh. 5.1 - How is the direction of the magnetic moment of a...Ch. 5.1 - If one of two wires of equal length is formed into...Ch. 5.1 - An electron moving in the positive x direction...Ch. 5.1 - A proton moving with a speed of 2 106 m/s through...Ch. 5.1 - A charged particle with velocity u is moving in a...Ch. 5.1 - A horizontal wire with a mass per unit length of...Ch. 5.1 - A square coil of 100 turns and 0.5 m long sides is...Ch. 5.2 - Two infinitely long parallel wires carry currents...
Ch. 5.2 - Devise a right-hand rule for the direction of the...Ch. 5.2 - What is a magnetic dipole? Describe its magnetic...Ch. 5.2 - Prob. 6ECh. 5.2 - A wire carrying a current of 4 A is formed into a...Ch. 5.2 - Prob. 8ECh. 5.3 - What are the fundamental differences between...Ch. 5.3 - Prob. 9CQCh. 5.3 - Compare the utility of applying the BiotSavart law...Ch. 5.3 - Prob. 11CQCh. 5.3 - A current I flows in the inner conductor of a long...Ch. 5.3 - The metal niobium becomes a superconductor with...Ch. 5.5 - What are the three types of magnetic materials and...Ch. 5.5 - What causes magnetic hysteresis in ferromagnetic...Ch. 5.5 - Prob. 14CQCh. 5.5 - The magnetic vector M is the vector sum of the...Ch. 5.6 - With reference to Fig. 5-24, determine the single...Ch. 5.7 - Prob. 15CQCh. 5.7 - What is the difference between self-inductance and...Ch. 5.7 - Prob. 17CQCh. 5.7 - Use Eq. (5.89) to obtain an expression for B at a...Ch. 5 - An electron with a speed of 8 106 m/s is...Ch. 5 - When a particle with charge q and mass m is...Ch. 5 - The circuit shown in Fig. P5.3 uses two identical...Ch. 5 - The rectangular loop shown in Fig. P5.4 consists...Ch. 5 - In a cylindrical coordinate system, a 2 m long...Ch. 5 - Prob. 6PCh. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - The loop shown in Fig. P5.9 consists of radial...Ch. 5 - An infinitely long, thin conducting sheet defined...Ch. 5 - An infinitely long wire carrying a 25 A current in...Ch. 5 - Prob. 12PCh. 5 - Prob. 13PCh. 5 - Prob. 14PCh. 5 - A circular loop of radius a carrying current I1 is...Ch. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Three long, parallel wires are arranged as shown...Ch. 5 - A square loop placed as shown in Fig. P5.20 has 2...Ch. 5 - Prob. 21PCh. 5 - Prob. 22PCh. 5 - Repeat Problem 5.22 for a current density J=zJ0er.Ch. 5 - In a certain conducting region, the magnetic field...Ch. 5 - Prob. 25PCh. 5 - Prob. 26PCh. 5 - Prob. 27PCh. 5 - A uniform current density given by J=zj0 (A/m2)...Ch. 5 - A thin current element extending between z = L/2...Ch. 5 - In the model of the hydrogen atom proposed by Bohr...Ch. 5 - Iron contains 8.5 1028 atoms/m3. At saturation,...Ch. 5 - The xy plane separates two magnetic media with...Ch. 5 - Given that a current sheet with surface current...Ch. 5 - In Fig. P5.34, the plane defined by x y = 1...Ch. 5 - The plane boundary defined by z = 0 separates air...Ch. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - A solenoid with a length of 20 cm and a radius of...Ch. 5 - Prob. 39PCh. 5 - The rectangular loop shown in Fig. P5.40 is...Ch. 5 - Determine the mutual inductance between the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The applied MMF to a simple magnetic circuit is 350AT. It was found that the resulting magnetic field denstiy is 0.7 Wb/m². The average length of this magnetic circuit is 1.64ft and its cross sectional area is 4cm². What is the reluctance (in AT/Wb) of the magnetic material of the core?arrow_forwardDivision: Elctronic Eng. Subject: Energy conversion I Year : Second Q1/ A / Discuss B-H curve of a ferro-magnetic material . B / Define the following terms (any three) : (i) MMF (ii ) magnetism. (iii ) Reluctance (v) flux density Q 2 A magnetic circuit has the mean length of flux path of 20 cm, and cross sectional area of 1 cm?. Relative permeability of its material is 2900. Find the mmf required to produce a flux density of 2 tesla in it. If an air gap of 1 mm is intro gap as a fraction of the total mmf to maintain the same flux density. luced in it, find the required the airarrow_forwardGoal:The intent of this problem is to understand how electrostatic models can be used outside of electrical engineering. This basic model is used to understand chemical reactions, bonding, and other forms of atomic processes. It also shows you the strength of electrostatic forces in an atom. The Thomson model of a hydrogen atom is a sphere of positive charge with radius Ro with an electron (a point charge) at its center. The total positive charge equals the electronic charge q. What is the force of attraction between an electron at a distance R from the center of the sphere of positive charge? OOOO qR 4π€, Ro O q²R 3πEO q²R 4π€, Roarrow_forward
- d. Find the magnitude of the magnetic field due to wire2 at the location of field point e. Find the unit directions for f and i and perform the cross product to detemine the direction of the magnetic field due tó wire2 at the location of field point P. 1. Find the magnitude of the magnetic field due to wiret at the location of field point Parrow_forwardPls help me with this questionarrow_forwardA coil of copper wire is moved parallel to a uniform magnetic field. As a result, the induced electromotive force (e.m.f) will A. O depend on the intensity of the magnetic field B. C. D. O O O depend on the velocity be zero be infinite in the coil.arrow_forward
- Rotating Choose... Magnetic Field Mutual Choose... inductancearrow_forwardAnswer 5arrow_forwardA magnetic flux density of 2.5 sin314t Tesla from the core with a cross section of 40 cm2 wandering. Accordingly, in 200 sipir and 45 sipir coils wrapped on the core Find the voltage that will occur.arrow_forward
- A solenoid similar to the figure below, has a core made of caststeel (refer to the figure on the next slide). It has a cross-sectional area of 4cm2 and a mean length of 20cm. The coil has 100turns, and the coil current is 3.2A. Find the following:a)magnetomotive force, mmfb)magnetic field intensity, Hc)flux density, B (with graph)arrow_forwardD.C. Power Supply 5) m A 60-cm long plastic rod is held in balance over a fulcrum. There is a 100-gr mass 10-cm left of the fulcrum. The rod weighs 36 gr and you may ignore the weight of the wires (green). The rod remains horizontal only when there is a 0.5 A current, which suggests the presence of a magnetic field. Find the direction and magnitude of this magnetic field. The rod and the rectangular loop are on the same plane.arrow_forwardA ferromagnetic core with a relative permeability of 1500 is shown in the following figure. The depth of the core is 5 cm. Because of fringing effects, the effective area of the air gaps is 5 percent larger than their physical size. If there are 300 turns in the coil wrapped around the center leg of the core, and if the current in the coil is 1.25 A, find the magnetic flux and the field density in all three legs of the core, as well as the magnetic flux and flux density in the two air gaps.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Electric Charge and Electric Fields; Author: Professor Dave Explains;https://www.youtube.com/watch?v=VFbyDCG_j18;License: Standard Youtube License