
Numerical Analysis
3rd Edition
ISBN: 9780134696454
Author: Sauer, Tim
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5.1, Problem 21E
To determine
Prove the second-order formula for the fourth derivative
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Please help me answer the following questions from this problem.
Find the general solution of the given differential equation.
y' + 4x3y = x3
y(x) = ?
Give the largest interval over which the general solution is defined.
Determine whether there are any transient terms in the general solution.
Please help me find the sample variance for this question.
Chapter 5 Solutions
Numerical Analysis
Ch. 5.1 - Use the two-point forward-difference formula to...Ch. 5.1 - Use the three-point centered-difference formula to...Ch. 5.1 - Use the two-point forward-difference formula to...Ch. 5.1 - Carry out the steps of Exercise 3, using the...Ch. 5.1 - Use the three-point centered-difference formula...Ch. 5.1 - Use the three-point centered-difference formula...Ch. 5.1 - Develop a formula for a two-point...Ch. 5.1 - Prove the second-order formula for the first...Ch. 5.1 - Develop a second-order formula for the first...Ch. 5.1 - Find the error term and order formula for the...
Ch. 5.1 - Find a second-order formula for approximating by...Ch. 5.1 - (a) Compute the two-point forward-difference...Ch. 5.1 - Develop a second-order method for approximating ...Ch. 5.1 - Extrapolate the formula developed in Exercise...Ch. 5.1 - Develop a first-order method for approximating ...Ch. 5.1 - Apply extrapolation to the formula developed in...Ch. 5.1 - Develop a second-order method for approximating ...Ch. 5.1 - Find, an upper bound for the error of the machine...Ch. 5.1 - Prove the second-order formula for the third...Ch. 5.1 - Prove the second-order formula for the third...Ch. 5.1 - Prob. 21ECh. 5.1 - This exercise justifies the beam equations (2.33)...Ch. 5.1 - Use Taylor expansions to prove that (5.16) is a...Ch. 5.1 - Prob. 24ECh. 5.1 - Investigate the reason for the name extrapolation....Ch. 5.1 - Make a table of the error of the three-point...Ch. 5.1 - Make a table and plot of the error of the...Ch. 5.1 - Make a table and plot of the error of the...Ch. 5.1 - Prob. 4CPCh. 5.1 - Prob. 5CPCh. 5.2 - Apply the composite Trapezoid Rule with , , and 4...Ch. 5.2 - Apply the Composite Midpoint Rule with, , and 4...Ch. 5.2 - Apply the composite Simpson’s Rule with, 2, and 4...Ch. 5.2 - Apply the composite Simpson’s Rule with, 2, and 4...Ch. 5.2 - Apply the Composite Midpoint Rule with, 2, and 4...Ch. 5.2 - Apply the Composite Midpoint Rule with, 2, and 4...Ch. 5.2 - Prob. 7ECh. 5.2 - Apply the open Newton-Cotes Rule (5.28) to...Ch. 5.2 - Apply Simpson’s Rule approximation to, and show...Ch. 5.2 - Integrate Newton’s divided-difference...Ch. 5.2 - Find the degree of precision of the following...Ch. 5.2 - Prob. 12ECh. 5.2 - Develop a composite version of the rule (5.28),...Ch. 5.2 - Prove the Composite Midpoint Rule (5.27).
Ch. 5.2 - Find the degree of precision of the degree four...Ch. 5.2 - Use the fact that the error term of Boole’s Rule...Ch. 5.2 - Prob. 17ECh. 5.2 - Prob. 1CPCh. 5.2 - Prob. 2CPCh. 5.2 - Prob. 3CPCh. 5.2 - Prob. 4CPCh. 5.2 - Prob. 5CPCh. 5.2 - Prob. 6CPCh. 5.2 - Apply the Composite Midpoint Rule to the improper...Ch. 5.2 - The arc length of the curve defined by from to ...Ch. 5.2 - Prob. 9CPCh. 5.2 - Prob. 10CPCh. 5.3 - Apply Romberg Integration to find for the...Ch. 5.3 - Apply Romberg Integration to find for the...Ch. 5.3 - Prob. 3ECh. 5.3 - Prob. 4ECh. 5.3 - Prove formula (5.31).
Ch. 5.3 - Prove formula (5.35).
Ch. 5.3 - Use Romberg Integration approximation to...Ch. 5.3 - Use Romberg Integration to approximate the...Ch. 5.3 - (a) Test the order of the second column of Romberg...Ch. 5.4 - Apply Adaptive Quadrature by hand, using the...Ch. 5.4 - Apply Adaptive Quadrature by hand, using Simpson’s...Ch. 5.4 - Prob. 3ECh. 5.4 - Develop an Adaptive Quadrature method for rule...Ch. 5.4 - Use Adaptive Trapezoid Quadrature to approximate...Ch. 5.4 - Modify the MATLAB code for Adaptive Trapezoid Rule...Ch. 5.4 - Carry out the steps of Computer Problem 1 for...Ch. 5.4 - Carry out the steps of Computer Problem 1 for the...Ch. 5.4 - Carry out the steps of Computer Problem 1 for the...Ch. 5.4 - Use Adaptive Trapezoid Quadrature to approximate...Ch. 5.4 - Carry out the steps of Problem 6, using Adaptive...Ch. 5.4 - The probability within standard deviations of the...Ch. 5.4 - Write a MATLAB function called myerf.m that uses...Ch. 5.5 - Approximate the integrals, using Gaussian...Ch. 5.5 - Prob. 2ECh. 5.5 - Approximate the integrals in Exercise 1, using ...Ch. 5.5 - Change variables, using the substitution (5.46) to...Ch. 5.5 - Approximate the integrals in Exercise 4, using ...Ch. 5.5 - Approximate the integrals, using Gaussian...Ch. 5.5 - Prob. 7ECh. 5.5 - Find the Legendre polynomials up to degree 3 and...Ch. 5.5 - Prob. 9ECh. 5.5 - Verify the coefficients and in Table 5.1 for...Ch. 5.5 - Write a MATLAB function that uses Adaptive...Ch. 5.5 - Write a program that, for any input between 0 and...Ch. 5.5 - Equipartition the path of Figure 5.6 into ...Ch. 5.5 - Prob. 4SACh. 5.5 - Prob. 5SACh. 5.5 - Prob. 6SACh. 5.5 - Write a program that traverses the path according...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Given that 4−4i is a zero, factor the following polynomial function completely. Use the Conjugate Roots Theorem, if applicable. f(x)=x4−5x3−2x2+176x−320arrow_forwardeliminate the parameter to find the cartesian equation of the curve and sketch the graph. On the graph show the direction it takes and the initial and terminal point. Please draw by hand and show how you got to each steparrow_forwardeliminate the parameter to find the cartesian equation of the curve and sketch the graph. On the graph show the direction it takes and the initial and terminal point. Please draw by hand and show how you got to each steparrow_forward
- eliminate the parameter to find the cartesian equation of the curve and sketch the graph. On the graph show the direction it takes and the initial and terminal point. Please draw by hand and show how you got to each steparrow_forwardThe diagram below models the layout at a carnival where G, R, P, C, B, and E are various locations on the grounds. GRPC is a parallelogram. Part A: Identify a pair of similar triangles. Part B: Explain how you know the triangles from Part A are similar. Part C: Find the distance from B to E and from P to E. Show your work.arrow_forwardeliminate the parameter to find the cartesian equation of the curve and sketch the graph. On the graph show the direction it takes and the initial and terminal point. Please draw by hand and show how you got to each steparrow_forward
- Q2*) Consider the extremisation of the integral I[y] = √²² F(x,y,y', y") dx x1 when y and y' are prescribed only at x = x1. Derive the so-called 'natural boundary conditions' that must be satisfied at x = x2. Taking a specific example: The functional I [y] is defined by I[y] = √² ((y″)² + y) dx with y(0) = 0 and y'(0) = 0. Write down the fourth-order Euler-Lagrange equation for this problem, stating the four boundary conditions. Find the general solution of the Euler-Lagrange equation, and then impose the boundary conditions to find the extremal.arrow_forwardThe basketball team at Bakersfield High School recorded their wins and losses of the season. The table given shows the data collected, in which the relationship between wins and losses is sorted by number of points scored. ≥ 100 points < 100 points Total Win 48 90 Loss 6 Total 100 Does the data give evidence of an association between scoring at least 100 points during the game and the basketball team winning? There is a weak, negative association. There is a weak, positive association. There is a strong, positive association. There is a strong, negative association.arrow_forwardCrumbs Cookies was interested in seeing if there was an association between cookie flavor and whether or not there was frosting. Given are the results of the last week's orders. Frosting No Frosting Total Sugar Cookie 50 Red Velvet 66 136 Chocolate Chip 58 Total 220 400 Which category has the greatest joint frequency? Chocolate chip cookies with frosting Sugar cookies with no frosting Chocolate chip cookies Cookies with frostingarrow_forward
- Graphically, explain the various forms of linear functionsarrow_forwardThe table given shows the length, in feet, of dolphins at an aquarium. 7 15 10 18 18 15 9 22 Are there any outliers in the data? There is an outlier at 22 feet. There is an outlier at 7 feet. There are outliers at 7 and 22 feet. There are no outliers.arrow_forwardName: Mussels & bem A section of a river currently has a population of 20 zebra mussels. The population of zebra mussels increases 60 % each month. What will be the population of zebra mussels after 2 years? 9 10 # of months # of mussels 1 2 3 4 5 6 7 8 o Graph your data. Remember to title your graph. What scale should be used on the y-axis? What scale should be used on the x-axis? Exponential Growth Equation y = a(1+r)*arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning

Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage


College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning

Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY