
Numerical Analysis
3rd Edition
ISBN: 9780134696454
Author: Sauer, Tim
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5.4, Problem 3E
To determine
To create: an Adaptive Quadrature method to the Midpoint Rule by finding a criterion to meet the tolerance on subintervals.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
[)
Hwk 25
Hwk 28 - (MA 244-03) (SP25) || X
Success Confirmation of Questic X
+
https://www.webassign.net/web/Student/Assignment-Responses/submit?dep=36606607&tags=autosave#question 384855
DETAILS
MY NOTES
LARLINALG8 7.2.001.
1. [-/2.85 Points]
Consider the following.
-14 60
A =
[
-4-5
P =
-3 13
-1 -1
(a) Verify that A is diagonalizable by computing P-1AP.
P-1AP =
具首
(b) Use the result of part (a) and the theorem below to find the eigenvalues of A.
Similar Matrices Have the Same Eigenvalues
If A and B are similar n x n matrices, then they have the same eigenvalues.
(11, 12) =
Need Help?
Read It
SUBMIT ANSWER
2. [-/2.85 Points]
DETAILS
MY NOTES
LARLINALG8 7.2.007.
For the matrix A, find (if possible) a nonsingular matrix P such that P-1AP is diagonal. (If not possible, enter IMPOSSIBLE.)
P =
A =
12 -3
-4
1
Verify that P-1AP is a diagonal matrix with the eigenvalues on the main diagonal.
P-1AP =
Need Help?
Read It
Watch It
SUBMIT ANSWED
80%
ill
จ
ASK YOUR TEACHER
PRACTICE ANOTHER
ASK YOUR…
Calculus lll
May I please have the all properties of the dot product?
Thank you
H.w: Find the Eigen vectors for the largest Eigen
value of the system
X1+ +2x3=0
3x1-2x2+x3=0
4x1+ +3x3=0
Chapter 5 Solutions
Numerical Analysis
Ch. 5.1 - Use the two-point forward-difference formula to...Ch. 5.1 - Use the three-point centered-difference formula to...Ch. 5.1 - Use the two-point forward-difference formula to...Ch. 5.1 - Carry out the steps of Exercise 3, using the...Ch. 5.1 - Use the three-point centered-difference formula...Ch. 5.1 - Use the three-point centered-difference formula...Ch. 5.1 - Develop a formula for a two-point...Ch. 5.1 - Prove the second-order formula for the first...Ch. 5.1 - Develop a second-order formula for the first...Ch. 5.1 - Find the error term and order formula for the...
Ch. 5.1 - Find a second-order formula for approximating by...Ch. 5.1 - (a) Compute the two-point forward-difference...Ch. 5.1 - Develop a second-order method for approximating ...Ch. 5.1 - Extrapolate the formula developed in Exercise...Ch. 5.1 - Develop a first-order method for approximating ...Ch. 5.1 - Apply extrapolation to the formula developed in...Ch. 5.1 - Develop a second-order method for approximating ...Ch. 5.1 - Find, an upper bound for the error of the machine...Ch. 5.1 - Prove the second-order formula for the third...Ch. 5.1 - Prove the second-order formula for the third...Ch. 5.1 - Prob. 21ECh. 5.1 - This exercise justifies the beam equations (2.33)...Ch. 5.1 - Use Taylor expansions to prove that (5.16) is a...Ch. 5.1 - Prob. 24ECh. 5.1 - Investigate the reason for the name extrapolation....Ch. 5.1 - Make a table of the error of the three-point...Ch. 5.1 - Make a table and plot of the error of the...Ch. 5.1 - Make a table and plot of the error of the...Ch. 5.1 - Prob. 4CPCh. 5.1 - Prob. 5CPCh. 5.2 - Apply the composite Trapezoid Rule with , , and 4...Ch. 5.2 - Apply the Composite Midpoint Rule with, , and 4...Ch. 5.2 - Apply the composite Simpson’s Rule with, 2, and 4...Ch. 5.2 - Apply the composite Simpson’s Rule with, 2, and 4...Ch. 5.2 - Apply the Composite Midpoint Rule with, 2, and 4...Ch. 5.2 - Apply the Composite Midpoint Rule with, 2, and 4...Ch. 5.2 - Prob. 7ECh. 5.2 - Apply the open Newton-Cotes Rule (5.28) to...Ch. 5.2 - Apply Simpson’s Rule approximation to, and show...Ch. 5.2 - Integrate Newton’s divided-difference...Ch. 5.2 - Find the degree of precision of the following...Ch. 5.2 - Prob. 12ECh. 5.2 - Develop a composite version of the rule (5.28),...Ch. 5.2 - Prove the Composite Midpoint Rule (5.27).
Ch. 5.2 - Find the degree of precision of the degree four...Ch. 5.2 - Use the fact that the error term of Boole’s Rule...Ch. 5.2 - Prob. 17ECh. 5.2 - Prob. 1CPCh. 5.2 - Prob. 2CPCh. 5.2 - Prob. 3CPCh. 5.2 - Prob. 4CPCh. 5.2 - Prob. 5CPCh. 5.2 - Prob. 6CPCh. 5.2 - Apply the Composite Midpoint Rule to the improper...Ch. 5.2 - The arc length of the curve defined by from to ...Ch. 5.2 - Prob. 9CPCh. 5.2 - Prob. 10CPCh. 5.3 - Apply Romberg Integration to find for the...Ch. 5.3 - Apply Romberg Integration to find for the...Ch. 5.3 - Prob. 3ECh. 5.3 - Prob. 4ECh. 5.3 - Prove formula (5.31).
Ch. 5.3 - Prove formula (5.35).
Ch. 5.3 - Use Romberg Integration approximation to...Ch. 5.3 - Use Romberg Integration to approximate the...Ch. 5.3 - (a) Test the order of the second column of Romberg...Ch. 5.4 - Apply Adaptive Quadrature by hand, using the...Ch. 5.4 - Apply Adaptive Quadrature by hand, using Simpson’s...Ch. 5.4 - Prob. 3ECh. 5.4 - Develop an Adaptive Quadrature method for rule...Ch. 5.4 - Use Adaptive Trapezoid Quadrature to approximate...Ch. 5.4 - Modify the MATLAB code for Adaptive Trapezoid Rule...Ch. 5.4 - Carry out the steps of Computer Problem 1 for...Ch. 5.4 - Carry out the steps of Computer Problem 1 for the...Ch. 5.4 - Carry out the steps of Computer Problem 1 for the...Ch. 5.4 - Use Adaptive Trapezoid Quadrature to approximate...Ch. 5.4 - Carry out the steps of Problem 6, using Adaptive...Ch. 5.4 - The probability within standard deviations of the...Ch. 5.4 - Write a MATLAB function called myerf.m that uses...Ch. 5.5 - Approximate the integrals, using Gaussian...Ch. 5.5 - Prob. 2ECh. 5.5 - Approximate the integrals in Exercise 1, using ...Ch. 5.5 - Change variables, using the substitution (5.46) to...Ch. 5.5 - Approximate the integrals in Exercise 4, using ...Ch. 5.5 - Approximate the integrals, using Gaussian...Ch. 5.5 - Prob. 7ECh. 5.5 - Find the Legendre polynomials up to degree 3 and...Ch. 5.5 - Prob. 9ECh. 5.5 - Verify the coefficients and in Table 5.1 for...Ch. 5.5 - Write a MATLAB function that uses Adaptive...Ch. 5.5 - Write a program that, for any input between 0 and...Ch. 5.5 - Equipartition the path of Figure 5.6 into ...Ch. 5.5 - Prob. 4SACh. 5.5 - Prob. 5SACh. 5.5 - Prob. 6SACh. 5.5 - Write a program that traverses the path according...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- [) Hwk 25 → C Hwk 27 - (MA 244-03) (SP25) IN X Answered: [) Hwk 25 4. [-/4 Poir X + https://www.webassign.net/web/Student/Assignment-Responses/submit?dep=36606606&tags=autosave#question3706544_6 3. [-/2.85 Points] DETAILS MY NOTES LARLINALG8 7.1.021. Find the characteristic equation and the eigenvalues (and a basis for each of the corresponding eigenspaces) of the matrix. 2 -2 5 0 3 -2 0-1 2 (a) the characteristic equation (b) the eigenvalues (Enter your answers from smallest to largest.) (1, 2, 13) = ·( ) a basis for each of the corresponding eigenspaces X1 x2 = x3 = Need Help? Read It Watch It SUBMIT ANSWER 4. [-/2.85 Points] DETAILS MY NOTES LARLINALG8 7.1.041. Find the eigenvalues of the triangular or diagonal matrix. (Enter your answers as a comma-separated list.) λ= 1 0 1 045 002 Need Help? Read It ASK YOUR TEACHER PRACTICE ANOTHER ASK YOUR TEACHER PRACTICE ANOTHER illarrow_forwardons 12. A sociologist hypothesizes that the crime rate is higher in areas with higher poverty rate and lower median income. She col- lects data on the crime rate (crimes per 100,000 residents), the poverty rate (in %), and the median income (in $1,000s) from 41 New England cities. A portion of the regression results is shown in the following table. Standard Coefficients error t stat p-value Intercept -301.62 549.71 -0.55 0.5864 Poverty 53.16 14.22 3.74 0.0006 Income 4.95 8.26 0.60 0.5526 a. b. Are the signs as expected on the slope coefficients? Predict the crime rate in an area with a poverty rate of 20% and a median income of $50,000. 3. Using data from 50 workarrow_forward2. The owner of several used-car dealerships believes that the selling price of a used car can best be predicted using the car's age. He uses data on the recent selling price (in $) and age of 20 used sedans to estimate Price = Po + B₁Age + ε. A portion of the regression results is shown in the accompanying table. Standard Coefficients Intercept 21187.94 Error 733.42 t Stat p-value 28.89 1.56E-16 Age -1208.25 128.95 -9.37 2.41E-08 a. What is the estimate for B₁? Interpret this value. b. What is the sample regression equation? C. Predict the selling price of a 5-year-old sedan.arrow_forward
- need help with 5 and 6 pleasearrow_forwardian income of $50,000. erty rate of 13. Using data from 50 workers, a researcher estimates Wage = Bo+B,Education + B₂Experience + B3Age+e, where Wage is the hourly wage rate and Education, Experience, and Age are the years of higher education, the years of experience, and the age of the worker, respectively. A portion of the regression results is shown in the following table. ni ogolloo bash 1 Standard Coefficients error t stat p-value Intercept 7.87 4.09 1.93 0.0603 Education 1.44 0.34 4.24 0.0001 Experience 0.45 0.14 3.16 0.0028 Age -0.01 0.08 -0.14 0.8920 a. Interpret the estimated coefficients for Education and Experience. b. Predict the hourly wage rate for a 30-year-old worker with four years of higher education and three years of experience.arrow_forward1. If a firm spends more on advertising, is it likely to increase sales? Data on annual sales (in $100,000s) and advertising expenditures (in $10,000s) were collected for 20 firms in order to estimate the model Sales = Po + B₁Advertising + ε. A portion of the regression results is shown in the accompanying table. Intercept Advertising Standard Coefficients Error t Stat p-value -7.42 1.46 -5.09 7.66E-05 0.42 0.05 8.70 7.26E-08 a. Interpret the estimated slope coefficient. b. What is the sample regression equation? C. Predict the sales for a firm that spends $500,000 annually on advertising.arrow_forward
- [) Hwk 25 4. [-/4 Points] Hwk 25 - (MA 244-03) (SP25) || X Answered: Homework#7 | bartle X + https://www.webassign.net/web/Student/Assignment-Responses/last?dep=36606604 DETAILS MY NOTES LARLINALG8 6.4.019. Use the matrix P to determine if the matrices A and A' are similar. -1 -1 12 9 '-[ ¯ ¯ ], ^ - [ _—2—2 _ ' ], ^' - [ ˜³ −10] P = 1 2 A = -20-11 A' -3-10 6 4 P-1 = Are they similar? Yes, they are similar. No, they are not similar. Need Help? Read It SUBMIT ANSWER P-1AP = 5. [-/4 Points] DETAILS MY NOTES LARLINALG8 6.4.023. Suppose A is the matrix for T: R³ - → R³ relative to the standard basis. Find the diagonal matrix A' for T relative to the basis B'. A' = -1 -2 0 A = -1 0 0 ' 0 02 B' = {(−1, 1, 0), (2, 1, 0), (0, 0, 1)} ☐☐☐ ↓ ↑ Need Help? Read It Update available →] - restart now ASK YOUR T Sync and save data { Sign In ill ↑ New tab HT New window N New private window +HP ASK YOUR T Bookmarks History Downloads > > HJ Passwords Add-ons and themes HA Print... HP Save page as... HS…arrow_forwardClarification: 1. f doesn’t have REAL roots2. f is a quadratic, so a≠0arrow_forward[J) Hwk 25 Hwk 25 - (MA 244-03) (SP25) || X Answered: Homework#7 | bartle X + https://www.webassign.net/web/Student/Assignment-Responses/last?dep=36606604 1. [-/4 Points] DETAILS MY NOTES Find the matrix A' for T relative to the basis B'. LARLINALG8 6.4.003. T: R² → R², T(x, y) = (x + y, 4y), B' = {(−4, 1), (1, −1)} A' = Need Help? Read It Watch It SUBMIT ANSWER 2. [-/4 Points] DETAILS MY NOTES LARLINALG8 6.4.007. Find the matrix A' for T relative to the basis B'. T: R³ → R³, T(x, y, z) = (x, y, z), B' = {(0, 1, 1), (1, 0, 1), (1, 1, 0)} A' = ↓ ↑ Need Help? Read It SUBMIT ANSWER 具⇧ ASK YOUR TEACHER PRACTICE ANOTHER ill ASK YOUR TEACHER PRACTICE ANOTHER 3. [-/4 Points] DETAILS MY NOTES LARLINALG8 6.4.013. ASK YOUR TEACHER PRACTICE ANOTHERarrow_forward
- Use Laplace transforms to solve the following heat problem: U₁ = Urr x > 0, t> 0 u(x, 0) = 10c a -X u(0,t) = 0 lim u(x,t) = 0 I7Xarrow_forward1) Given matrix A below, answer the following questions: a) What is the order of the matrix? b) What is the element a13? c) What is the element a₁₁? 4 -1arrow_forward[25 points] Given the vector let v = ER² and the collection of vectors ε = E-{)·()}-{☹) (9)} = {(A)·(9)}· B: = and C = · {(6)·(})}· answer the following question. (a) (b) (c) (d) (e) verify Verify is a basis for R² and find the coordinate [] of under ε. Verify B is a basis for R2 and find the coordinate []B of ʊ Verify C is a basis for R2 and find the coordinate []c of under ε. under ε. Find the change-of-basis matrix [I]+B from basis B to basis ε, and EE+BUB Find the change-of-basis matrix [I]B+ε from basis Ɛ to basis B, and verify [U]B= [] B+EVEarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Statistics 4.1 Introduction to Inferential Statistics; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=QLo4TEvBvK4;License: Standard YouTube License, CC-BY