
Concept explainers
(a)
Interpretation:
By burning sulfur with oxygen sulfur trioxide can be prepared:
A 5.00 L flask having 5 g of oxygen and sulfur at a temperature of 25 0C and pressure of 995 mm Hg is heated. The temperature in the flask increases to 138 0C after the completion of reaction. The pressure of SO3 in the flask needs to be calculated.
Concept introduction:
According to the
The molarity of the solution is calculated as follows:
Here, n is number of moles of solute and V is volume of solution in L.

Answer to Problem 91QAP
1.05 atm
Explanation of Solution
By burning sulfur with oxygen sulfur trioxide can be prepared
In the 5 g of sulfur the mole of sulfur present is:
Moles of sulfur reacted is 0.156 mol.
Similarly, number of moles of oxygen can be calculated using the ideal gas equation as follows:
The given pressure can be converted into atm as follows:
Thus,
The given temperature can be converted into Kelvin as follows:
Thus,
Putting the values,
From the balanced chemical reaction, 2 mol of S must react with 3 mol of
The number of moles of oxygen gas given is 0.268 mol thus, it is present in excess and the sulfur is limiting reactant.
The number of moles of SO3 produced is same as that of sulfur.
After completion of reaction, the volume is 5.00 L, temperature is 138 0C and the pressure in the flask due to SO3 is calculated as below:
Therefore, the pressure of SO3 is 1.05 atm.
(b)
Interpretation:
The total pressure in the flask needs to be determined.
Concept introduction:
The ideal gas equation is as follows:
Here, P is pressure, V is volume, n is number of moles, R is Universal gas constant and T is temperature.

Answer to Problem 91QAP
1.27 atm.
Explanation of Solution
The molar ratio of O2 :S is 3:2. The moles of oxygen used to react with 0.156 mol of sulfur are calculated as below:
Therefore, the moles of O2 used in 0.156 mol of sulfur are 0.234 mol.
The pressure in the flask prior the reaction is 995 mm Hg. The moles of O2 present initially a 25 0C are calculated as below:
Therefore, mole of oxygen present in the mixture is 0.268 mol.
The oxygen which is left unreacted is calculated as below:
The total number of moles in the flask =
The total number of moles in the flask is 0.190 mol.
The total pressure of gas in the flask due to SO3 and unreacted oxygen is calculated as
Therefore, the total pressure in the flask is 1.27 atm.
(c)
Interpretation:
The molarity of H2 SO4 formed if 250.0 mL is added into the flask needs to be determined.
Concept introduction:
According to the ideal
The molarity of the solution is calculated as follows:
Here, n is number of moles of solute and V is volume of solution in L.

Answer to Problem 91QAP
0.03 M.
Explanation of Solution
The volume of the flask containing SO3 is 5.00 L, if 250.0 mL of water is added, the total volume of solution becomes:
The molarity of solution is calculated as follows:
The moles of SO3 is 0.156 mol. The molarity of H2 SO4 is calculated as below:
Therefore, the molarity of H2 SO4 is 0.03 M.
Want to see more full solutions like this?
Chapter 5 Solutions
CHEMISTRY:PRIN.+REACTIONS-OWLV2 ACCESS
- elow are experimentally determined van Deemter plots of column efficiency, H, vs. flow rate. H is a quantitative measurement of band broadening. The left plot is for a liquid chromatography application and the night is for gas chromatography. Compare and contrast these two plots in terms of the three band broadening mechanisms presented in this activity. How are they similar? How do they differ? Justify your answers.? 0.4 H (mm) 0.2 0.1- 0.3- 0 0.5 H (mm) 8.0 7.0 6.0 5.0 4.0- 3.0 T +++ 1.0 1.5 0 2.0 4.0 Flow Rate, u (cm/s) 6.0 8.0 Flow Rate, u (cm/s)arrow_forwardPredict the products of this organic reaction: + H ZH NaBH3CN H+ n. ? Click and drag to start drawing a structure. Xarrow_forwardWhat is the missing reactant R in this organic reaction? + R H3O+ + • Draw the structure of R in the drawing area below. • Be sure to use wedge and dash bonds if it's necessary to draw one particular enantiomer. Click and drag to start drawing a structure.arrow_forward
- What would be the best choices for the missing reagents 1 and 3 in this synthesis? 1 1. PPh3 2. n-BuLi 2 • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Click and drag to start drawing a structure.arrow_forwardThe product on the right-hand side of this reaction can be prepared from two organic reactants, under the conditions shown above and below the arrow. Draw 1 and 2 below, in any arrangement you like. 1+2 NaBH₂CN H+ N Click and drag to start drawing a structure. X $arrow_forwardExplain what is the maximum absorbance of in which caffeine absorbs?arrow_forward
- Explain reasons as to why the amount of caffeine extracted from both a singular extraction (5ml Mountain Dew) and a multiple extraction (2 x 5.0ml Mountain Dew) were severely high when compared to coca-cola?arrow_forwardProtecting Groups and Carbonyls 6) The synthesis generates allethrolone that exhibits high insect toxicity but low mammalian toxicity. They are used in pet shampoo, human lice shampoo, and industrial sprays for insects and mosquitos. Propose detailed mechanistic steps to generate the allethrolone label the different types of reagents (Grignard, acid/base protonation, acid/base deprotonation, reduction, oxidation, witting, aldol condensation, Robinson annulation, etc.) III + VI HS HS H+ CH,CH,Li III I II IV CI + P(Ph)3 V ༼ Hint: no strong base added VI S VII IX HO VIII -MgBr HgCl2,HgO HO. isomerization aqeuous solution H,SO, ༽༽༤༽༽ X MeOH Hint: enhances selectivity for reaction at the S X ☑arrow_forwardDraw the complete mechanism for the acid-catalyzed hydration of this alkene. esc 田 Explanation Check 1 888 Q A slock Add/Remove step Q F4 F5 F6 A བྲA F7 $ % 5 @ 4 2 3 & 6 87 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Ce W E R T Y U S D LL G H IK DD 요 F8 F9 F10 F1 * ( 8 9 0 O P J K L Z X C V B N M H He commandarrow_forward
- Explanation Check F1 H₂O H₂ Pd 1) MCPBA 2) H3O+ 1) Hg(OAc)2, H₂O 2) NaBH4 OH CI OH OH OH hydration halohydrin formation addition halogenation hydrogenation inhalation hydrogenation hydration ☐ halohydrin formation addition halogenation formation chelation hydrogenation halohydrin formation substitution hydration halogenation addition Ohalohydrin formation subtraction halogenation addition hydrogenation hydration F2 80 F3 σ F4 F5 F6 1 ! 2 # 3 $ 4 % 05 Q W & Å © 2025 McGraw Hill LLC. All Rights Reserved. F7 F8 ( 6 7 8 9 LU E R T Y U A F9arrow_forwardShow the mechanism steps to obtain the lowerenergy intermediate: *see imagearrow_forwardSoap is made by the previous reaction *see image. The main difference between one soap and another soap isthe length (number of carbons) of the carboxylic acid. However, if a soap irritates your skin, they mostlikely used too much lye.Detergents have the same chemical structure as soaps except for the functional group. Detergentshave sulfate (R-SO4H) and phosphate (R-PO4H2) functional groups. Draw the above carboxylic acidcarbon chain but as the two variants of detergents. *see imagearrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





