Concept explainers
(a)
Interpretation:
The pressure 42.7 kPa is to be converted into mmHg, atm and psi.
Concept introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Answer to Problem 4QAP
The pressure in psi is 6.20 psi
The pressure in mm Hg is
The pressure in atm is 0.422 atm.
Explanation of Solution
The force exerted by gas over a unit surface of area is called pressure of gas. The expression of pressure is as below:
Where, P is pressure of gas, F is force exerted by gas and A is area.
The SI unit of pressure is Pascal, which is denoted as Pa. It is represented as follows;
The pressure given in kPa is 47.7 kPa. The pressure is also represented in psi, that is, pound-force square inch. The value of one Pascal is equivalent to
Therefore, the pressure in psi is 6.20 psi.
The value of one Pascal pressure is equivalent to 9.87 atm. The pressure is converted into atmosphere as follow:
Hence, the pressure in atm is 0.422 atm.
The value of one atmosphere is equivalent to 760 mm Hg. The pressure is converted into mm Hg as follow:
Hence, the pressure in mm Hg is
(b)
Interpretation:
The pressure 29.1 psi is to be converted into mmHg, atm and kPa.
Concept introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Answer to Problem 4QAP
The pressure in kPa is 201 kPa.
The pressure in mm Hg is
The pressure in atmosphere is 1.98 atm.
Explanation of Solution
The pressure given in pound-force square inch is 29.1 psi. The value of one psi pressure is equivalent to 6.90kPa. The pressure is converted into kPa as follows:
Hence, the pressure in kPa is 201 kPa.
The value of one Pascal pressure is equivalent to 9.87 atm. The pressure is converted into atmosphere as follows:
Hence, the pressure in atmosphere is 1.98 atm.
The value of one atmosphere is equivalent to 760 mmHg. The pressure is converted into mm Hg as follows:
Hence, the pressure in mm Hg is:
(c)
Interpretation:
The pressure 0.788 atm is to be converted into mmHg, psi and kPa.
Concept introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Answer to Problem 4QAP
The pressure in mm Hg is 599 mm Hg.
The pressure in psi is 11.6 psi.
The pressure in kPa is 79.8 kPa.
Explanation of Solution
The value of one atmosphere is equivalent to 760 mmHg. The 0.788 atmosphere pressure is converted into mm Hg as follows:
Hence, the pressure in mm Hg is 599 mm Hg.
The value of one atmosphere pressure is equivalent to 101.33 kPa. The pressure is converted into kPa as follows:
Hence, the pressure in kPa is 79.8 kPa.
The value of one Pascal is equivalent to
Hence, the pressure in psi is 11.6 psi.
(d)
Interpretation:
The pressure 1216 mm Hg is to be converted into atm, psi, and kPa.
Concept introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Answer to Problem 4QAP
The pressure in atmosphere is 1.60 atm.
The pressure in psi is 23.5 psi.
The pressure in kPa is 162.1 kPa
Explanation of Solution
The given pressure value is 1216 mm Hg. The value of one atmosphere is equivalent to 760 mmHg. The pressure is converted into atmosphere as follows:
Therefore, the pressure in atmosphere is 1.60 atm.
The value of one atmosphere pressure is equivalent to 101.33 kPa. The pressure is converted into kPa as follows:
Hence, the pressure in kPa is 162.1 kPa.
The value of one Pascal is equivalent to
Hence, the pressure in psi is 23.5 psi.
Want to see more full solutions like this?
Chapter 5 Solutions
CHEMISTRY:PRIN.+REACTIONS-OWLV2 ACCESS
- 2 NO(g) + H2(g) → N2(g) +2 H2O(g) If NO has rate of disappearance of 0.025 M/min, what is the rate of this reaction?arrow_forward2Fe3+(aq) + Sn2+(aq) □ 2Fe²+(aq) + Sn 4+ (aq) If the change in Sn2+ concentration is 0.0010M in 38.5 seconds, what is the rate of appearance of Fe²+?arrow_forwardUsing the equation below, if the rate of disappearance of Cl2 is 0.26 M/min, what is the rate of this reaction? 2NO(g) + Cl2(g) → 2NOCI(g)arrow_forward
- A 45.0 mL solution containing a mixture of 0.0634 M KCN and 0.0634 M KCI is titrated with 0.107 M AgNO. From this mixture, which silver salt will precipitate first? A list of Ksp values can be found in the table of solubility constants. • AgCI • not enough information to determine AgCN What is the concentration of Ag* at the first equivalence point? [Ag*] = Will the second silver salt begin to precipitate at the first equivalence point before the first silver salt has completely precipitated? • not enough information to determine • yes • noarrow_forward[Review Topics] [References] Indicate whether the pair of structures shown represent stereoisomers, constitutional isomers, different conformations of the same compound, or the same conformation of a compound viewed from a different perspective. Note that cis, trans isomers are an example of stereoisomers. H₂N ✓ CI H₂N NH2 NH₂ CI Submit Answer Retry Entire Group 2 more group attempts remaining Previous Next>arrow_forwardDon't used Ai solutionarrow_forward
- Draw resonance structures for the following compounds. Please provide a thorough explanation that allows for undertanding of topic.arrow_forwardBF3 has a no dipole moment. a) Draw the Lewis structure for BF3, showing all nonbonding electrons. b) Indicate the polarity of every atom in the structure using δ+ and δ– notation, and explain why the molecule has no net dipole. Please provide a thorough explanation that allows for undertanding of topic.arrow_forwardFor each reaction shown below follow the curved arrows to complete each equation by showing the structure of the products. Identify the acid, the base, the conjugated acid and conjugated base. Consutl a pKa table and choose the direciton the equilibrium goes. Please provide a thorough explanation that allows for undertanding of topic.arrow_forward
- Need help understanding please help Let’s assume the initial volume of the gas is 4.80 LL , the initial temperature of the gas is 29.0 °C°C , and the system is in equilibrium with an external pressure of 1.2 bar (given by the sum of a 1 bar atmospheric pressure and a 0.2 bar pressure due to a brick that rests on top of the piston). What is the final pressure of the gas? What is the final volume of the gas? What happens with the piston after you finish heating the gas? Assume you do not need to worry about the gas cooling down again because the outside of the container is at a lower temperature. That is, you manage to keep the gas at a constant temperature that equals 54.2 °C°C What is the sign of w? What is the value of w? Be careful with units. How do you convert bar*L to J?arrow_forwardFor a neutral hydrogen atom with an electron in the n = 4 state, how many different energies are possible when a photon is emitted?arrow_forwardFor the following compound identify the lone pairs and indicate if each lone pair is localized or delocalized. Please provide a thorough explanation that allows for undertanding of topic.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning