
Concept explainers
Interpretation:
The mass percent of composition of the gaseous mixture needs to be calculated.
Concept introduction:
Mass percent for any component is known as the ratio of mass of the component to the mass of all the component.
Here mA is the mass of component A, mtot is the mass of total components.
According to the
Moles are known as the ratio of mass and molar mass. Below is the formula:
Here, MM is molar mass and m is the mass.

Answer to Problem 89QAP
The composition of O2 is
Explanation of Solution
The pressure, volume and temperature of both tanks A and B is 1.38 atm, 750 ml or 0.750 L, and 25 0C respectively.
Converting the temperature from Celsius to Kelvin
Therefore, temperature in kelvin is 298 K
Both the tanks have CO2, O2 and N2 . Substituting the values in ideal gas equation and total number of moles of gases:
The total no. of moles of gases in each tank are 0.042 mol.
The mass of absorber containing CO2 from tank A is 0.114 g. The molar mass of CO2 is 44 g/mol. The mol of CO2 in each tank is:
After removal of N2 from tank B, the pressure of tank B is 1.11 atm. Now, the mol of gases remaining are:
Therefore, the total mole of CO2 and O2 in each tank is 0.034 mol
The moles of O2 and N2 are:
And
Therefore, the mole of O2 and N2 is 0.031 mol and 0.008 mol respectively.
The mass of CO2 is 0.114. The molar mass of O2 is 32 g/mol. The mol of N2 is 28 g/mol. Now the mass of O2 :
The mass of N2 would be:
Therefore, the mass of O2 is 0.99 g and mass of N2 is 0.224 g
The total mass of gases in each tank:
The total mass of gases is 1.330 g.
Now calculating the mass percent O2, N2 and CO2.
Thus, the composition of O2 is
The composition of O2 is
Want to see more full solutions like this?
Chapter 5 Solutions
CHEMISTRY:PRIN.+REACTIONS-OWLV2 ACCESS
- The reaction of solid dimethylhydrazine, (CH3)2N2H2, and liquefied dinitrogen tetroxide, N2O4, has been investigated for use as rocket fuel. The reaction produces the gases carbon dioxide (CO2), nitrogen (N2), and water vapor (H2O), which are ejected in the exhaust gases. In a controlled experiment, solid dimethylhydrazine was reacted with excess dinitrogen tetroxide, and the gases were collected in a closed balloon until a pressure of 2.50 atm and a temperature of 400.0 K were reached.(a) What are the partial pressures of CO2, N2, and H2O?(b) When the CO2 is removed by chemical reaction, what are the partial pressures of the remaining gases?arrow_forwardOne liter of chlorine gas at 1 atm and 298 K reacts completely with 1.00 L of nitrogen gas and 2.00 L of oxygen gas at the same temperature and pressure. A single gaseous product is formed, which fills a 2.00 L flask at 1.00 atm and 298 K. Use this information to determine the following characteristics of the product:(a) its empirical formula;(b) its molecular formula;(c) the most favorable Lewis formula based on formal charge arguments (the central atom is N);(d) the shape of the molecule.arrow_forwardHow does the square root mean square velocity of gas molecules vary with temperature? Illustrate this relationship by plotting the square root mean square velocity of N2 molecules as a function of temperature from T=100 K to T=300 K.arrow_forward
- Draw product B, indicating what type of reaction occurs. F3C CF3 NH2 Me O .N. + B OMearrow_forwardBenzimidazole E. State its formula. sState the differences in the formula with other benzimidazoles.arrow_forwardDraw product A, indicating what type of reaction occurs. F3C CN CF3 K2CO3, DMSO, H₂O2 Aarrow_forward
- 19) Which metal is most commonly used in galvanization to protect steel structures from oxidation? Lead a. b. Tin C. Nickel d. Zinc 20) The following molecule is an example of a: R₁ R2- -N-R3 a. Secondary amine b. Secondary amide c. Tertiary amine d. Tertiary amidearrow_forwardpls helparrow_forwardIndicate the product of the reaction OH OH CH3-CC- Ph + H2SO4 a 20°C | CH3 Pharrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





