Potable water (drinking water) should not have manganese concentrations in excess of 0.05 mg/mL. If the manganese concentration is greater than 0.1 mg/mL, it imparts a foul taste to the water and discolors laundry and porcelain surfaces. Manganese(II) ion is oxidized to permanganate ion by bismuthate ion,
(a) Write a balanced net ionic equation for the reaction.
(b) How many milligrams of
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Chemistry: The Molecular Nature of Matter
Additional Science Textbook Solutions
Living by Chemistry
Living By Chemistry: First Edition Textbook
Fundamentals of Heat and Mass Transfer
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- Write balanced net ionic equations for the following reactions in acid solution. (a) Liquid hydrazine reacts with an aqueous solution of sodium bromate. Nitrogen gas and bromide ions are formed. (b) Solid phosphorus (P4) reacts with an aqueous solution of nitrate to form nitrogen oxide gas and dihydrogen phosphate (H2PO4-) ions. (c) Aqueous solutions of potassium sulfite and potassium permanganate react. Sulfate and manganese(II) ions are formed.arrow_forwardThree reactions very important to the semiconductor industry are The reduction of silicon dioxide to crude silicon, SiO2(s) + 2 C(s) → Si(s) + 2 CO(g) ΔrH° = 689.9 kJ/mol The formation of silicon tetrachloride from crude silicon, Si(s) + 2 Cl2(g) → SiCl4(g) ΔrH° = −657.01 kJ/mol The reduction of silicon tetrachloride to pure silicon with magnesium, SiCl4(g) + 2 Mg(s) → 2 MgCl2(s) + Si(s) ΔrH° = −625.6 kJ/mol Calculate the overall enthalpy change when 1.00 mol sand, SiO2, changes into very pure silicon by this series of reactions.arrow_forwardThe Ostwald process for the commercial production of nitric acid involves the Following three steps: 4NH3(g)+5O2(g)4NO(g)+6H2O(s)2NO(g)+O2(g)2NO2(g)3NO2(g)+H2O(l)2HNO3(aq)+NO(g) a. Which reaction in the Ostwald process are oxidation-reduction reactions? b. Identify each oxidizing agent and reducing agent.arrow_forward
- Xenon trioxide, XeO3, reacts with aqueous base to form the xenate anion, HXeO4. This ion reacts further with OH to form the perxenate anion, XeO64, in the following reaction: 2HXeO4(aq)+2OH(aq)XeO64(aq)+Xe(g)+O2(g)+2H2O(l) Identify the elements that are oxidized and reduced in this reaction. You will note that the equation is balanced with respect to the number of atoms on either side. Verify that the redox part of this equation is also balanced, that is, that the extents of oxidation and reduction are also equal.arrow_forwardCalculate the molarity of AgNO3 in a solution prepared by dissolving 1.44 g AgNO3 in enough water to form 1.00 L solution.arrow_forwardUsing circles to represent cations and squares to represent anions, show pictorially the reactions that occur between aqueous solutions of (a) Fe3+ and OH-. (b) Na+ and PO43-.arrow_forward
- The carbon dioxide exhaled in the breath of astronauts is often removed from the spacecraft by reaction with lithium hydroxide 2LiOH(s)+CO2(g)Li2CO3(s)+H2O(l) Estimate the grams of lithium hydroxide required per astronaut per day. Assume that each astronaut requires 2.50 103 kcal of energy per day. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 2.50 103 kcal of heat, calculate the amount of CO2 produced and hence the amount of LiOH required. The H for glucose(s) is 1273 kJ/mol.arrow_forwardDraw the flow diagram for a calculation that illustrates how to use a titration to determine the concentration of a solution of HNO3, by reaction with 1.00 g Na2CO3.arrow_forwardIf enough Li2SO4 dissolves in water to make a 0.33 M solution, explain why the molar concentration of Li+ is different from the molar concentration of Li2SO4(aq).arrow_forward
- The reaction of elemental phosphorus and excess oxygen produces P4O10. Name the compound. (a) phosphorus oxide (b) phosphoric acid (c) phosphorus decaoxide (d) tetraphosphorus decaoxidearrow_forwardYou are given four different aqueous solutions and told that they each contain NaOH, Na2CO3, NaHCO3, or a mixture of these solutes. You do some experiments and gather these data about the samples. Sample A: Phenolphthalein is colorless in the solution. Sample B: The sample was titrated with HCl until the pink color of phenolphthalein disappeared, then methyl orange was added. The solution became pink. Methyl orange changes color from pH 3.01 (red) to pH 4.4 (orange). Sample C: Equal volumes of the sample were titrated with standardized acid. Using phenolphthalein as an indicator required 15.26 mL of standardized acid to change the phenolphthalein color. The other sample required 17.90 mL for a color change using methyl orange as the indicator. Sample D: Two equal volumes of the sample were titrated with standardized HCl. Using phenolphthalein as the indicator, it took 15.00 mL of acid to reach the equivalence point; using methyl orange as the indicator required 30.00 mL HCl to achieve neutralization. Identify the solute in each of the solutions.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning