Chemistry: The Molecular Nature of Matter
7th Edition
ISBN: 9781118516461
Author: Neil D. Jespersen, Alison Hyslop
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 26RQ
Interpretation Introduction
Interpretation:
The product formed by burning of sulfur in air and the limiting reactant in this reaction is to be determined.
Concept Introduction:
Combustion is the process of burning of a substance in the presence of excess amount of oxygen.
Combustion is an exothermic process.
Limiting reactant is that reactant which limits the amount of product formation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Chemistry: The Molecular Nature of Matter
Ch. 5 - When sodium reacts with molecular oxygen, O2, the...Ch. 5 - Prob. 2PECh. 5 - The chlorite ion, ClO2, is a potent disinfectant,...Ch. 5 - Assign oxidation numbers to each atom in...Ch. 5 - Prob. 5PECh. 5 - Chlorine dioxide, ClO2, is used to kill bacteria...Ch. 5 - The following equation is nor balanced. Explain...Ch. 5 - Practice Exercise 5.8
The element technetium...Ch. 5 - Practice Exercise 5.9
Consider the following...Ch. 5 - Balance the following equation for a basic...
Ch. 5 - Write the balanced half-react ions for the...Ch. 5 - Prob. 12PECh. 5 - Suppose an aqueous mixture is prepared containing...Ch. 5 - Prob. 14PECh. 5 - Prob. 15PECh. 5 - Write a balanced equation for the combustion of...Ch. 5 - Prob. 17PECh. 5 - Prob. 18PECh. 5 - Prob. 1RQCh. 5 - Prob. 2RQCh. 5 - Prob. 3RQCh. 5 - Are the following redox reactions? Explain....Ch. 5 - If the oxidation number of nitrogen in a certain...Ch. 5 - When balancing redox reactions, which side of a...Ch. 5 - Prob. 7RQCh. 5 - What are the net charges on the left and right...Ch. 5 - In Question 5.8, which half-reaction represents...Ch. 5 - The following equation is not balanced....Ch. 5 - 5.11 What is a nonoxidizing acid? Give two...Ch. 5 - What is the strongest oxidizing agent in an...Ch. 5 - Prob. 13RQCh. 5 - Prob. 14RQCh. 5 - What is a single replacement reaction?Ch. 5 - If a metal is able to react with a solution of...Ch. 5 - Prob. 17RQCh. 5 - Prob. 18RQCh. 5 - Where in the activity series do we find the best...Ch. 5 - When manganese reacts with silver ions, is...Ch. 5 - Prob. 21RQCh. 5 - Prob. 22RQCh. 5 - Prob. 23RQCh. 5 - If one of the impurities in diesel fuel has the...Ch. 5 - Prob. 25RQCh. 5 - Prob. 26RQCh. 5 - Prob. 27RQCh. 5 - Potassium permanganate is often used for redox...Ch. 5 - Assign oxidation numbers to the atoms in the...Ch. 5 - 5.30 Assign oxidation numbers to the atoms in the...Ch. 5 - Assign oxidation numbers to each atom in the...Ch. 5 - Assign oxidation numbers to the elements...Ch. 5 - 5.33 Assign oxidation numbers to the elements in...Ch. 5 - 5.34 Assign oxidation numbers to the elements in...Ch. 5 - Titanium burns in pure nitrogen to form TiN. What...Ch. 5 - 5.36 Zirconia, which is , is used to make ceramic...Ch. 5 - 5.37 Ozone, , is an allotrope of oxygen and is one...Ch. 5 - 5.38 The other major air pollutant is . What are...Ch. 5 - For the following reactions, identify the...Ch. 5 - 5.40 For the following reactions, identify the...Ch. 5 - When chlorine is added to drinking water to kill...Ch. 5 - One pollutant in smog is nitrogen dioxide. NO2....Ch. 5 - Balance the following equations for reactions...Ch. 5 - 5.44 Balance the following equations for reactions...Ch. 5 - Prob. 45RQCh. 5 - 5.46 Balance the following equations for reactions...Ch. 5 - 5.47 Balance the equations for the following...Ch. 5 - Balance the equations for the following reactions...Ch. 5 - Prob. 49RQCh. 5 - 5.50 Hydroiodic acid reduces chlorine to...Ch. 5 - Prob. 51RQCh. 5 - Corn is grown for human consumption, feeding...Ch. 5 - Prob. 53RQCh. 5 - Laundry bleach such as Clorox is a dilute solution...Ch. 5 - Prob. 55RQCh. 5 - Chlorine is a good bleaching agent because it is...Ch. 5 - Write balanced molecular, ionic, and net ionic...Ch. 5 - 5.58 Write balanced molecular, ionic, and net...Ch. 5 - Prob. 59RQCh. 5 - Prob. 60RQCh. 5 - Prob. 61RQCh. 5 - Prob. 62RQCh. 5 - Prob. 63RQCh. 5 - Hot, concentrated sulfuric acid is a fairly strong...Ch. 5 - Use Table 5.3 to predict the outcome of the...Ch. 5 - 5.66 Use Table 5.3 to predict the outcome of the...Ch. 5 - The following reactions occur spontaneously....Ch. 5 - The following reactions occur spontaneously....Ch. 5 - Prob. 69RQCh. 5 - When chromium metal is dipped into a solution of...Ch. 5 - Write a balanced equation for the reaction...Ch. 5 - Write a balanced equation for the reaction...Ch. 5 - Write the balanced chemical equation for the...Ch. 5 - Write the balanced chemical equation for the...Ch. 5 - 5.75 Write balanced chemical equations for the...Ch. 5 - Write balanced chemical equations for the complete...Ch. 5 - 5.77 Write balanced equations for the combustion...Ch. 5 - 5.78 Write balanced equations for the combustion...Ch. 5 - 5.79 The metabolism of carbohydrates such as...Ch. 5 - Methanol, CH3OH, has been suggested as an...Ch. 5 - Write the balanced equation for the combustion of...Ch. 5 - 5.82 Thiophene, , is an impurity in crude oil and...Ch. 5 - Write chemical equations for the reaction of...Ch. 5 - Prob. 84RQCh. 5 - Prob. 85RQCh. 5 - Prob. 86RQCh. 5 - In an acidic solution, permanganate ion reacts...Ch. 5 - 5.88 In an acidic solution, bisulfite ion reacts...Ch. 5 - Prob. 89RQCh. 5 - Potable water (drinking water) should not have...Ch. 5 - 5.91 Sulfites are used worldwide in the wine...Ch. 5 - Methylbromide, CH3Br, is used in agriculture to...Ch. 5 - A sample of a copper ore with a mass of 0.4225 g...Ch. 5 - 5.94 A 1.362 g sample of an iron ore that...Ch. 5 - 5.95 Hydrogen peroxide, , solution can be...Ch. 5 - 5.96 Sodium nitrite, , is used as a preservative...Ch. 5 - Prob. 97RQCh. 5 - Prob. 98RQCh. 5 - Both calcium chloride and sodium chloride are used...Ch. 5 - 5.100 One way to analyze a sample for nitrite ion...Ch. 5 - Use oxidation numbers to show that the...Ch. 5 - Prob. 102RQCh. 5 - Prob. 103RQCh. 5 - Prob. 104RQCh. 5 - Balance the following equations using the...Ch. 5 - Prob. 106RQCh. 5 - What is the average oxidation number of carbon in...Ch. 5 - Prob. 108RQCh. 5 - In Problem 5-108, were all of the experiments...Ch. 5 - Prob. 110RQCh. 5 - 5.111 In each of the following pairs, choose the...Ch. 5 - Use Table 5.3 to predict whether the following...Ch. 5 - Sucrose, C12H22O11, is ordinary table sugar. Write...Ch. 5 - Balance the following equations by the...Ch. 5 - 5.115 Lead(IV) oxide reacts with hydrochloric acid...Ch. 5 - Prob. 116RQCh. 5 - A copper bar with a mass of 12.340 g is dipped...Ch. 5 - Prob. 118RQCh. 5 - 5.119 As described in the Chemistry Outside the...Ch. 5 - Titanium(IV) can be reduced to titanium(III) by...Ch. 5 - A researcher planned to use chlorine gas in an...Ch. 5 - 5.122 A sample of a tin ore weighing 0.3000 g was...Ch. 5 - Biodiesel is formed from the reaction of oils with...Ch. 5 - *5.124 In June 2002, the Department of Health and...Ch. 5 - An organic compound contains carbon, hydrogen, and...Ch. 5 - *5.126 A mixture is made by combining with ....Ch. 5 - A solution containing 0.1244 g of K2C2O4 was...Ch. 5 - It was found that a 20.0 mL portion of a solution...Ch. 5 - A 15.00 mL sample of a solution containing oxalic...Ch. 5 - A solution with a volume of 500.0 mL contained a...Ch. 5 - Prob. 131RQCh. 5 - We described the ion-electron method for balancing...Ch. 5 - Assuming that a chemical reaction with DNA could...Ch. 5 - Would you expect atomic oxygen and chlorine to be...Ch. 5 - Prob. 135RQCh. 5 - Prob. 136RQ
Knowledge Booster
Similar questions
- The carbon dioxide exhaled in the breath of astronauts is often removed from the spacecraft by reaction with lithium hydroxide 2LiOH(s)+CO2(g)Li2CO3(s)+H2O(l) Estimate the grams of lithium hydroxide required per astronaut per day. Assume that each astronaut requires 2.50 103 kcal of energy per day. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 2.50 103 kcal of heat, calculate the amount of CO2 produced and hence the amount of LiOH required. The H for glucose(s) is 1273 kJ/mol.arrow_forwardNitric acid is produced commercially by the Ostwald process, represented by the following equations: 4NH3(g)+5O24NO(g)+6H2O(g)2NO(g)+O2(g)2NO2(g)3NO2(g)+H2O(l)2HNO3(aq)+NO(g) What mass of NH3 must be used to produce 1.0 106 kg HNO3 by the Ostwald process? Assume 100% yield in each reaction, and assume that the NO produced in the third step is not recycled.arrow_forwardConsider the reaction between oxygen (O2) gas and magnesium metal to form magnesium oxide. Using oxidation states, how many electrons would each oxygen atom gain, and how many electrons would each magnesium atom lose? How many magnesium atoms are needed to react with one oxygen molecule? Write a balanced equation for this reaction.arrow_forward
- What is Hrxn for reaction of iron(III) oxide and carbon monoxide to give iron metal and carbon dioxide gas? Use the following reactions: 4Fe(s)+3O2(g)2Fe2O3(s)H=1648.4kJ4CO(g)+O2(g)2CO3(g)H=565.98kJarrow_forward(a) Butane gas, C4H10, can burn completely in air [use O2(g) as the other reactant] to give carbon dioxide gas and water vapor. Write a balanced equation for this combustion reaction. (b) Write a balanced chemical equation for the complete combustion of C3H7BO3, a gasoline additive. The products of combustion are CO2(g), H2O(g), and B2O3(s).arrow_forwardComplete the missing information in the following skeletion equation and balance the chemical equation: NaOH(aq)+3NaCl(aq)+Al(OH)3(aq)arrow_forward
- Complete and balance the equations of the following reactions, each of which could be used to remove hydrogen sulfide from natural gas: (a) Ca(OH)2(s)+H2S(g) (b) Na2CO3(aq)+H2S(g)arrow_forwardBalance each of the following equations, and then write the net ionic equation. Show states for all reactants and products (s, . g, aq). (a) the reaction of sodium hydroxide and iron(II) chloride to give iron(II) hydroxide and sodium chloride (b) the reaction of barium chloride with sodium carbonate to give barium carbonate and sodium chloride (c) the reaction of ammonia with phosphoric acidarrow_forwardEthanol, C2H5OH, is a gasoline additive that can be produced by fermentation of glucose. C6H12O62C2H5OH+2CO2 (a) Calculate the mass (g) of ethanol produced by the fermentation of 1.000 lb glucose. (b) Gasohol is a mixture of 10.00 mL ethanol per 90.00 mL gasoline. Calculate the mass (in g) of glucose required to produce the ethanol in 1.00 gal gasohol. Density of ethanol = 0.785 g/mL. (c) By 2022, the U. S. Energy Independence and Security Act calls for annual production of 3.6 1010 gal of ethanol, no more than 40% of it produced by fermentation of corn. Fermentation of 1 ton (2.2 103 lb) of corn yields approximately 106 gal of ethanol. The average corn yield in the United States is about 2.1 105 lb per 1.0 105 m2. Calculate the acreage (in m2) required to raise corn solely for ethanol production in 2022 in the United States.arrow_forward
- list at least three quantities that must be conserved in chemical reactions.arrow_forwardThe Hall process is an important method by which pure aluminum is prepared from its oxide (alumina, Al2O3 ) by indirect reaction with graphite (carbon). Balance the following equation, which is a simplified representation of this process. m:math>Al2O3(s)+C(s)Al(s)+CO2(g)arrow_forwardBalance the following equations: (a) for the reaction to produce "superphosphate" fertilizer Ca3(PO4)2(s) + H2SO4(aq) Ca(H2PO4)2(aq) + CaSO4(s) (b) for the reaction to produce diborane, B2H6 NaBH4(s) + H2SO4(aq) B2H6(g) + H2(g) + Na2SO4(aq) (c) for the reaction to produce tungsten metal from tungsten(VI) oxide WO3(s) + H2(g) W(s) + H2O() (d) for the decomposition of ammonium dichromate (NH4)2Cr2O7(s) N2(g) + H2O() + Cr2O3(s)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781285199030
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning