Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 84AP
An aluminum block of mass m1 = 2.00 kg and a copper block of mass m2 = 6.00 kg are connected by a light string over a frictionless pulley. They sit on a steel surface as shown in Figure P5.84, where θ = 30.0°. (a) When they are released from rest, will they start to move? If they do, determine (b) their acceleration and (c) the tension in the string. If they do not move, determine (d) the sum of the magnitudes of the
Figure P5.84
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You find it takes 190 N of horizontal force to move an unloaded pickup truck along a level road at a speed of 2.4 m/s . You then load up the pickup and pump up its tires so that its total weight increases by 42%while the coefficient of rolling friction decreases by 19%. Now what horizontal force will you need to move the pickup along the same road at the same speed? The speed is low enough that you can ignore air resistance..
A 5.00 kg box sits at rest at the bottom of a ramp that is 8.00 m long and is inclined at 30 degrees above the horizontal. The coefficent of kinetic friction between the box and the surface is 0.40, and coefficent of static friction is 0.43. What constant force F, applied parallel to the surface of the ramp, is required to push the box to the top of the ramp in a time of 6.00 seconds?
Suppose you are at a bowling alley, where a machine uses a constant
force and pushes balls up a ramp one meter in length. The balls are
sliding -- not rolling -- along the incline, and they end up half a meter
above the base of the ramp. Ignore friction. Approximately how much
force does the machine put on a 5 kg bowling ball?
1.0 m
H
0.5 m
200 N
50 N
25 N
O 5N
Impossible to determine
Chapter 5 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 5.2 - Which of the following statements is correct? (a)...Ch. 5.4 - An object experiences no acceleration. Which of...Ch. 5.4 - You push an object, initially at rest, across a...Ch. 5.5 - Suppose you are talking by interplanetary...Ch. 5.6 - (i) If a fly collides with the windshield of a...Ch. 5.8 - You press your physics textbook flat against a...Ch. 5.8 - Prob. 5.7QQCh. 5 - The driver of a speeding empty truck slams on the...Ch. 5 - In Figure OQ5.2, a locomotive has broken through...Ch. 5 - Prob. 3OQ
Ch. 5 - Prob. 4OQCh. 5 - Prob. 5OQCh. 5 - The manager of a department store is pushing...Ch. 5 - Two objects are connected by a string that passes...Ch. 5 - Prob. 8OQCh. 5 - A truck loaded with sand accelerates along a...Ch. 5 - A large crate of mass m is place on the flatbed of...Ch. 5 - If an object is in equilibrium, which of the...Ch. 5 - A crate remains stationary after it has been...Ch. 5 - An object of mass m moves with acceleration a down...Ch. 5 - Prob. 1CQCh. 5 - Your hands are wet, and the restroom towel...Ch. 5 - In the motion picture It Happened One Night...Ch. 5 - If a car is traveling due westward with a constant...Ch. 5 - A passenger sitting in the rear of a bus claims...Ch. 5 - A child tosses a ball straight up. She says that...Ch. 5 - A person holds a ball in her hand. (a) Identify...Ch. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Twenty people participate in a tug-of-war. The two...Ch. 5 - Prob. 11CQCh. 5 - Prob. 12CQCh. 5 - A weightlifter stands on a bathroom scale. He...Ch. 5 - Prob. 14CQCh. 5 - Suppose you are driving a classic car. Why should...Ch. 5 - Prob. 16CQCh. 5 - Describe two examples in which the force of...Ch. 5 - The mayor of a city reprimands some city employees...Ch. 5 - Give reasons for the answers to each of the...Ch. 5 - Prob. 20CQCh. 5 - Identify actionreaction pairs in the following...Ch. 5 - Prob. 22CQCh. 5 - Prob. 23CQCh. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - If a man weighs 900 N on the Earth, what would he...Ch. 5 - A 3.00-kg object undergoes an acceleration given...Ch. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - The average speed of a nitrogen molecule in air is...Ch. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. An electron of mass 9. 11 1031 kg has an...Ch. 5 - Prob. 12PCh. 5 - One or more external forces, large enough to be...Ch. 5 - A brick of mass M has been placed on a rubber...Ch. 5 - Two forces, F1=(6.00i4.00j)N and...Ch. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - You stand on the seat of a chair and then hop off....Ch. 5 - Prob. 21PCh. 5 - Review. Three forces acting on an object are given...Ch. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Review. Figure P5.15 shows a worker poling a boata...Ch. 5 - An iron bolt of mass 65.0 g hangs from a string...Ch. 5 - Prob. 27PCh. 5 - The systems shown in Figure P5.28 are in...Ch. 5 - Prob. 29PCh. 5 - A block slides down a frictionless plane having an...Ch. 5 - The distance between two telephone poles is 50.0...Ch. 5 - A 3.00-kg object is moving in a plane, with its x...Ch. 5 - A bag of cement weighing 325 N hangs in...Ch. 5 - A bag of cement whose weight is Fg hangs in...Ch. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - An object of mass m = 1.00 kg is observed to have...Ch. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - An object of mass m1 = 5.00 kg placed on a...Ch. 5 - Prob. 41PCh. 5 - Two objects are connected by a light string that...Ch. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - In the system shown in Figure P5.23, a horizontal...Ch. 5 - An object of mass m1 hangs from a string that...Ch. 5 - A block is given an initial velocity of 5.00 m/s...Ch. 5 - A car is stuck in the mud. A tow truck pulls on...Ch. 5 - Prob. 49PCh. 5 - Prob. 50PCh. 5 - In Example 5.8, we investigated the apparent...Ch. 5 - Consider a large truck carrying a heavy load, such...Ch. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - A 25.0-kg block is initially at rest on a...Ch. 5 - Why is the following situation impassible? Your...Ch. 5 - Prob. 57PCh. 5 - Before 1960m people believed that the maximum...Ch. 5 - Prob. 59PCh. 5 - A woman at an airport is towing her 20.0-kg...Ch. 5 - Review. A 3.00-kg block starts from rest at the...Ch. 5 - The person in Figure P5.30 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Prob. 65PCh. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - Prob. 71PCh. 5 - A black aluminum glider floats on a film of air...Ch. 5 - Prob. 73APCh. 5 - Why is the following situation impossible? A book...Ch. 5 - Prob. 75APCh. 5 - A 1.00-kg glider on a horizontal air track is...Ch. 5 - Prob. 77APCh. 5 - Prob. 78APCh. 5 - Two blocks of masses m1 and m2, are placed on a...Ch. 5 - Prob. 80APCh. 5 - An inventive child named Nick wants to reach an...Ch. 5 - Prob. 82APCh. 5 - Prob. 83APCh. 5 - An aluminum block of mass m1 = 2.00 kg and a...Ch. 5 - Prob. 85APCh. 5 - Prob. 86APCh. 5 - Prob. 87APCh. 5 - Prob. 88APCh. 5 - A crate of weight Fg is pushed by a force P on a...Ch. 5 - Prob. 90APCh. 5 - A flat cushion of mass m is released from rest at...Ch. 5 - In Figure P5.46, the pulleys and pulleys the cord...Ch. 5 - What horizontal force must be applied to a large...Ch. 5 - Prob. 94APCh. 5 - A car accelerates down a hill (Fig. P5.95), going...Ch. 5 - Prob. 96CPCh. 5 - Prob. 97CPCh. 5 - Initially, the system of objects shown in Figure...Ch. 5 - A block of mass 2.20 kg is accelerated across a...Ch. 5 - Prob. 100CPCh. 5 - Prob. 101CPCh. 5 - In Figure P5.55, the incline has mass M and is...Ch. 5 - Prob. 103CPCh. 5 - Prob. 104CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An aluminum block of mass m1 = 2.00 kg and a copper block of mass m2 = 6.00 kg are connected by a light string over a frictionless pulley. They sit on a steel surface as shown in Figure P5.46, where = 30.0. (a) When they are released from rest, will they start to move? If they do, determine (b) their acceleration and (c) the tension in the string. If they do not move, determine (d) the sum of the magnitudes of the forces of friction acting on the blocks. Figure P5.46arrow_forwardA 11 kg block rests on a 26 degree inclined frictionless surface and is attached by a light string to a 30 kg hanging mass where the string passes over a massless frictionless pulley. If g = 9.8 m/s2, what is the tension in the connecting string?arrow_forwardThe figure shows a container of mass m1 = 4.9 kg connected to a block of mass m2 by a cord looped around a frictionless pulley. The cord and pulley have negligible mass. When the container is released from rest, it accelerates at 2.2 m/s? across the horizontal frictionless surface. What are (a) the tension in the cord and (b) mass m2? (al Number Units The absolute tolerance is ± 0.1. (b) Number Units This answer has no units * (degrees) Save for Later Attempts: 0 of 3 used Submit Answer m kg m/s m/s^2 N/m kg-m/s or N-s N/m^2 or Pa kg/m^3 m/s^3 timesarrow_forward
- A 35.0-kg child swings in a swing supported by two chains, each 2.98 m long. The tension in each chain at the lowest point is 440 N. (a) Find the child's speed at the lowest point.m/s(b) Find the force exerted by the seat on the child at the lowest point. (Ignore the mass of the seat.)N (upward)arrow_forwardTry again. A 4.6 kg body is at rest on a frictionless horizontal air track when a constant horizontal force F acting in the positive direction of an x axis along the track is applied to the body. A stroboscopic graph of the position of the body as it slides to the right is shown in the figure. The force F is applied to the body at t = 0, and the graph records the position of the body at 0.50 s intervals. How much work is done on the body by the applied force F between t = 0 and t = 1.8 s? 0.5s -1.0 s 1.5s 2.0 s 0.2 0.4 0.6 0.8 x (m) Number To.8 Units the tolerance is +/-2% Click if you would like to Show Work for this question: Open Show Work SHOW HINT LINK TO TEXT LINK TO SAMPLE PROBLEM VIDEO MINI-LECTURE to search 10:33 PM ENG 4/4/2021 ASUS 13) 16 17 1ghome 3 4 R U F G トarrow_forwardA 35.0-kg child swings in a swing supported by two chains, each 3.02 m long. The tension in each chain at the lowest point is 412 N. (a) Find the child's speed at the lowest point. m/s (b) Find the force exerted by the seat on the child at the lowest point. (Ignore the mass of the seat.) N (upward)arrow_forward
- A 80.0 kg mail bag hangs by a vertical rope 3.5 m long. A postal worker then displaces the bag to a position 2.4 m sideways from its original position, always keeping the rope taut.arrow_forwardA fisherman has caught a very large, 5.0 kg fish from a dock that is 2.0 m above the water. He is using lightweight fishing line that will break under a tension of 54 N or more. He is eager to get the fish to the dock in the shortest possible time. If the fish is at rest at the water’s surface, what’s the least amount of time in which the fisherman can raise the fish to the dock without losing it?arrow_forwardm F 0 You are pressing a box against a sloped ceiling, perpendicular to the ceiling itself, as shown in the figure. The mass of the box is m=3.3 kg, the angle of the ceiling is 0=37°, and the coefficients of friction are μs-0.31 and μk=0.2. (a) What is the minimum force needed from you to keep the box at rest? N (b) Choosing up the sloping ceiling to be the positive direction, suppose you push with a force 4 N smaller than your answer to the previous part. What will be the acceleration of the box? m/s²arrow_forward
- You are trying to move a light fixture into an apartment. There are hooks in the elevator so you hang the fixture on a hook with a chain. You don't want the fixture to touch the walls, so you attach a rope to the side that pulls horizontally as shown, keeping the fixture stationary with respect to the elevator. Note theta =38∘. As the elevator ascends vertically, the magnitude of the tension force in the chain from the elevator on the fixture as a function of the vertical position of the elevator, y, is Fcf(y)=F_0*e^-y/y1 where F_0=167 N and y1=3.3 m. Using the fixture as your system, if the elevator goes from y=0 to y=5.94m, what is the work done by the tension force in the chain on the fixture?arrow_forwardPlease answer this. I will surely upvote!!!arrow_forwardTwo boxes m, = 5.00 kg and m, = 3.00 kg are connected by a light string the passes over a frictionless pulley as shown in the figure. The box A lies on the inclined plane while the box B is vertically suspended at the other end of the string. What is the inclination angle of the incline when the system remains at rest? Select one: O 59.0° O 36.9° O 31.0° O 53.1°arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY