Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 11P
Review. An electron of mass 9. 11 × 10−31 kg has an initial speed of 3.00 × 105 m/s. It travels in a straight line, and its speed increases to 7.00 × 105 m/s in a distance of 5.00 cm. Assuming its acceleration is constant, (a) determine the magnitude of the force exerted on the electron and (b) compare this force with the weight of the electron, which we ignored.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron of mass 9.11 x 10-31 kg has an initial speed of 3.00 x 105 m/s. It travels in a straight line, and its speed increases to 7.00 x 105 m/s in a distance of 5.00 cm. Assuming its acceleration is constant, (a) determine the magnitude of the force exerted on the electron and (b) compare this force with the weight of the electron, which we ignored.
An electron of mass 9.11 x 1031 kg has an initial speed of 2.20 x 10° m/s. It travels in a straight line, and its speed increases to 7.40 x 10° m/s in a distance of 5.60 cm. Assume its
acceleration is constant.
(a) Determine the magnitude of the force exerted on the electron.
N
(b) Compare this force (F) with the weight of the electron (F), which we ignored.
F
Need Help?
Read It
Master It
1:47 PM
P Type here to search
11/9/2020
DELL
In a cathode ray tube, electrons are accelerated from rest by a constant electric force of magnitude 6.40 x 10-17 N during the first 2.70 cm of the tube's length; then they move at essentially constant velocity another 45.0 cm before hitting the screen.
Find the speed of the electrons when they hit the screen.
Chapter 5 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 5.2 - Which of the following statements is correct? (a)...Ch. 5.4 - An object experiences no acceleration. Which of...Ch. 5.4 - You push an object, initially at rest, across a...Ch. 5.5 - Suppose you are talking by interplanetary...Ch. 5.6 - (i) If a fly collides with the windshield of a...Ch. 5.8 - You press your physics textbook flat against a...Ch. 5.8 - Prob. 5.7QQCh. 5 - The driver of a speeding empty truck slams on the...Ch. 5 - In Figure OQ5.2, a locomotive has broken through...Ch. 5 - Prob. 3OQ
Ch. 5 - Prob. 4OQCh. 5 - Prob. 5OQCh. 5 - The manager of a department store is pushing...Ch. 5 - Two objects are connected by a string that passes...Ch. 5 - Prob. 8OQCh. 5 - A truck loaded with sand accelerates along a...Ch. 5 - A large crate of mass m is place on the flatbed of...Ch. 5 - If an object is in equilibrium, which of the...Ch. 5 - A crate remains stationary after it has been...Ch. 5 - An object of mass m moves with acceleration a down...Ch. 5 - Prob. 1CQCh. 5 - Your hands are wet, and the restroom towel...Ch. 5 - In the motion picture It Happened One Night...Ch. 5 - If a car is traveling due westward with a constant...Ch. 5 - A passenger sitting in the rear of a bus claims...Ch. 5 - A child tosses a ball straight up. She says that...Ch. 5 - A person holds a ball in her hand. (a) Identify...Ch. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Twenty people participate in a tug-of-war. The two...Ch. 5 - Prob. 11CQCh. 5 - Prob. 12CQCh. 5 - A weightlifter stands on a bathroom scale. He...Ch. 5 - Prob. 14CQCh. 5 - Suppose you are driving a classic car. Why should...Ch. 5 - Prob. 16CQCh. 5 - Describe two examples in which the force of...Ch. 5 - The mayor of a city reprimands some city employees...Ch. 5 - Give reasons for the answers to each of the...Ch. 5 - Prob. 20CQCh. 5 - Identify actionreaction pairs in the following...Ch. 5 - Prob. 22CQCh. 5 - Prob. 23CQCh. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - If a man weighs 900 N on the Earth, what would he...Ch. 5 - A 3.00-kg object undergoes an acceleration given...Ch. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - The average speed of a nitrogen molecule in air is...Ch. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. An electron of mass 9. 11 1031 kg has an...Ch. 5 - Prob. 12PCh. 5 - One or more external forces, large enough to be...Ch. 5 - A brick of mass M has been placed on a rubber...Ch. 5 - Two forces, F1=(6.00i4.00j)N and...Ch. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - You stand on the seat of a chair and then hop off....Ch. 5 - Prob. 21PCh. 5 - Review. Three forces acting on an object are given...Ch. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Review. Figure P5.15 shows a worker poling a boata...Ch. 5 - An iron bolt of mass 65.0 g hangs from a string...Ch. 5 - Prob. 27PCh. 5 - The systems shown in Figure P5.28 are in...Ch. 5 - Prob. 29PCh. 5 - A block slides down a frictionless plane having an...Ch. 5 - The distance between two telephone poles is 50.0...Ch. 5 - A 3.00-kg object is moving in a plane, with its x...Ch. 5 - A bag of cement weighing 325 N hangs in...Ch. 5 - A bag of cement whose weight is Fg hangs in...Ch. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - An object of mass m = 1.00 kg is observed to have...Ch. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - An object of mass m1 = 5.00 kg placed on a...Ch. 5 - Prob. 41PCh. 5 - Two objects are connected by a light string that...Ch. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - In the system shown in Figure P5.23, a horizontal...Ch. 5 - An object of mass m1 hangs from a string that...Ch. 5 - A block is given an initial velocity of 5.00 m/s...Ch. 5 - A car is stuck in the mud. A tow truck pulls on...Ch. 5 - Prob. 49PCh. 5 - Prob. 50PCh. 5 - In Example 5.8, we investigated the apparent...Ch. 5 - Consider a large truck carrying a heavy load, such...Ch. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - A 25.0-kg block is initially at rest on a...Ch. 5 - Why is the following situation impassible? Your...Ch. 5 - Prob. 57PCh. 5 - Before 1960m people believed that the maximum...Ch. 5 - Prob. 59PCh. 5 - A woman at an airport is towing her 20.0-kg...Ch. 5 - Review. A 3.00-kg block starts from rest at the...Ch. 5 - The person in Figure P5.30 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Prob. 65PCh. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - Prob. 71PCh. 5 - A black aluminum glider floats on a film of air...Ch. 5 - Prob. 73APCh. 5 - Why is the following situation impossible? A book...Ch. 5 - Prob. 75APCh. 5 - A 1.00-kg glider on a horizontal air track is...Ch. 5 - Prob. 77APCh. 5 - Prob. 78APCh. 5 - Two blocks of masses m1 and m2, are placed on a...Ch. 5 - Prob. 80APCh. 5 - An inventive child named Nick wants to reach an...Ch. 5 - Prob. 82APCh. 5 - Prob. 83APCh. 5 - An aluminum block of mass m1 = 2.00 kg and a...Ch. 5 - Prob. 85APCh. 5 - Prob. 86APCh. 5 - Prob. 87APCh. 5 - Prob. 88APCh. 5 - A crate of weight Fg is pushed by a force P on a...Ch. 5 - Prob. 90APCh. 5 - A flat cushion of mass m is released from rest at...Ch. 5 - In Figure P5.46, the pulleys and pulleys the cord...Ch. 5 - What horizontal force must be applied to a large...Ch. 5 - Prob. 94APCh. 5 - A car accelerates down a hill (Fig. P5.95), going...Ch. 5 - Prob. 96CPCh. 5 - Prob. 97CPCh. 5 - Initially, the system of objects shown in Figure...Ch. 5 - A block of mass 2.20 kg is accelerated across a...Ch. 5 - Prob. 100CPCh. 5 - Prob. 101CPCh. 5 - In Figure P5.55, the incline has mass M and is...Ch. 5 - Prob. 103CPCh. 5 - Prob. 104CP
Additional Science Textbook Solutions
Find more solutions based on key concepts
The formula for the sum Sn of the geometric series Sn=a+ar+.....arn−1 .
Mathematical Methods in the Physical Sciences
How is the charging time for a capacitor correlated with the initial current? That is, if the initial current i...
Matter and Interactions
Why doesnt Earths rotation provide a suitable time standard?
Essential University Physics (3rd Edition)
7. (II) (a) What is the current in the element of an electric clothes dryer with a resistance of 8.6 ?when it i...
Physics: Principles with Applications
The validity of a scientific law.
The Physical Universe
What discovery in the 15th century greatly advanced progress in science?
Conceptual Physical Science Explorations
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An electron of mass 9.11 x 10-31 kg has an initial speed of 3.80 x 105 m/s. It travels in a straight line, and its speed increases to 6.80 x 105 m/s in a distance of 5.20 cm. Assume its acceleration is constant. (a) Determine the magnitude of the force exerted on the electron. N (b) Compare this force (F) with the weight of the electron (Fg), which we ignored. F Fg =arrow_forwardAn electron is a subatomic particle (m = 9.11 x 10-31 kg) that is subject to electric forces. An electron moving in the +x direction accelerates from an initial velocity of +7.67 x 105 m/s to a final velocity of 2.57 x 106 m/s while traveling a distance of 0.0857 m. The electron's acceleration is due to two electric forces parallel to the x axis: = 7.62 x 10-17 N, and , which points in the -x direction. Find the magnitudes of (a) the net force acting on the electron and (b) the electric force .arrow_forwardAn electron is a subatomic particle (m = 9.11 x 1031 kg) that is subject to electric forces. An electron moving in the +x direction accelerates from an initial velocity of +5.72 x 105 m/s to a final velocity of 2.64 x 106 m/s while traveling a distance of 0.0783 m. The electron's acceleration is due to two electric forces parallel to the x axis: F1 = 9.44 x 10-17 N, and F2, which points in the -x direction. Find the magnitudes of (a) the net force acting on the electron and (b) the electric force F2. F F FF Voarrow_forward
- An electron of mass 9.11 x 10-31 kg has an initial speed of 2.00 x 105 m/s. It travels in a straight line, and its speed increases to 6.00 x 105 m/s in a distance of 4.40 cm. Assume its acceleration is constant. (a) Determine the magnitude of the force exerted on the electron. N(b) Compare this force (F) with the weight of the electron (Fg), which we ignored. F/Fg=arrow_forwardAn electron of mass 9.11 x 1031 kg has an initial speed of 2.20 x 10 m/s. It travels in a straight line, and its speed increases to acceleration is constant. 40 x 10° m/s in a distance of 5.60 cm. Assume its (a) Determine the magnitude of the force exerted on the electron. (b) Compare this force (F) with the weight of the electron (F), which we ignored. Need Help? Read It P Type here to search 1:43 PM 11/9/2020 DELLarrow_forwardParticle physicists have identified a type of fundamental particle called a muon, which effectively behaves like a very heavy electron. Imagine a muon of mass 1.88 × 10-28 kg is observed in a particle accelerator. It has an initial speed of 3.50 × 105 m/s. It moves in a straight line, and its speed increases to 1.25 × 106 m/s in a distance of 75.0 cm. Assume that the acceleration is constant. Find the magnitude of the force exerted on the muon.arrow_forward
- In a particle accelerator, a proton has mass 1.67 × 10−27 kg and an initial speed of 2.00 × 105 m/s. It moves in a straight line, and its speed increases to 9.00 × 105 m/s in a distance of 10.0 cm. Assume that the acceleration is constant. Find the magnitude of the force exerted on the proton.arrow_forwardAn electron is a subatomic particle (m = 9.11 x 10-31 kg) that is subject to electric forces. An electron moving in the +x direction accelerates from an initial velocity of +6.88 x 105 m/s to a final velocity of 2.30 x 106 m/s while traveling a distance of 0.0685 m. The electron's acceleration is due to two electric forces parallel to the x axis: F₁ = 7.84 x 10-17 N, and F2, which points in the -x direction. Find the magnitudes of (a) the net force acting on the electron and (b) the electric force F2. F₂ F₁ VO (a) Number i ! Units N (b) Number Units N eTextbook and Media -> C Σ > F2 F₁ וום 1 0> Assistance Usedarrow_forwardAn electron is a subatomic particle (m = 9.11 x 10-31 kg) that is subject to electric forces. An electron moving in the +x direction accelerates from an initial velocity of +6.88 x 105 m/s to a final velocity of 2.30 x 106 m/s while traveling a distance of 0.0685 m. The electron's acceleration is due to two electric forces parallel to the x axis: F₁ = 7.84 x 10-17 N, and F2, which points in the -x direction. Find the magnitudes of (a) the net force acting on the electron and (b) the electric force F2. (a) Number (b) Number i eTextbook and Media Hint F₂ F₁ ! Units N Units N M ון! > F₁arrow_forward
- An electron is a subatomic particle (m= 9.11 x 10-31 kg) that is subject to electric forces. An electron moving in the +x direction accelerates from an initial velocity of +7.31 x 105 m/s to a final velocity of 1.98 x 106 m/s while traveling a distance of 0.0545 m. The electron's acceleration is due to two electric forces parallel to the x axis: F₁ = 7.52 x 10-¹7 N, and F2, which points in the -x direction. Find the magnitudes of (a) the net force acting on the electron and (b) the electric force F2. F₁ F₁ F₂ F₁ (a) Number i (b) Number i VO X Units Unitsarrow_forwardAn SUV drives on a straight-line track. Starting with a speed v0 = 14.4m/s, it comes to rest over a distance d = 28.8m Part (a) Write an expression for the magnitude of the net force on a passenger with mass m . If m = 61.3kg, then what is the numeric value, in newtons, for the net force in Part (a)? .arrow_forwardAn electron is a subatomic particle (m= 9.11 x 10-31 kg) that is subject to electric forces. An electron moving in the +x direction accelerates from an initial velocity of +6.34 x 105 m/s to a final velocity of 1.30 x 106 m/s while traveling a distance of 0.0295 m. The electron's acceleration is due to two electric forces parallel to the x axis: F₁ = 9.54 x 10-17 N, and F2, which points in the -x direction. Find the magnitudes of (a) the net force acting on the electron and (b) the electric force F2. F₂₁ F₂ F₁ (a) Number i (b) Number i Units Units +arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY