Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 22CQ
(a)
To determine
If the chair of A or chair of B slide if student A pulls the rope on her end.
(b)
To determine
The chair which slides if the teacher pulls the rope at his end.
(c)
To determine
The chair which slides if the student
(d)
To determine
The chair which slides when the teacher ties the rope to chair of student
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Determine the magnitude of the y-component of the reaction force at pin A (in kN). The beam AB is a
standard 0.5 m I-beam with a mass of 95 kg per meter of length.
14
l
A
0.25 m
0.5 m
0.12 m
5 m
25°
1.5 m
10 kN
B
Two boxes m, = 5.00 kg and m, = 3.00 kg are connected by a light string the passes over a frictionless pulley as shown in the figure. The box A lies on the inclined plane while
the box B is vertically suspended at the other end of the string. What is the inclination angle of the incline when the system remains at rest?
Select one:
O 59.0°
O 36.9°
O 31.0°
O 53.1°
Two blocks are connected by a string as in the figure and the system is released from rest. The coefficient of
kinetic friction between Block A and the table is 0.3. Ignore the air resistance and friction between the pulley
and the string. Find the tension in the rope.
12 kg
Pulley
m, = 12
kg
0.
82.3 N
O 117.6 N
76.44 N
58.8 N
Chapter 5 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 5.2 - Which of the following statements is correct? (a)...Ch. 5.4 - An object experiences no acceleration. Which of...Ch. 5.4 - You push an object, initially at rest, across a...Ch. 5.5 - Suppose you are talking by interplanetary...Ch. 5.6 - (i) If a fly collides with the windshield of a...Ch. 5.8 - You press your physics textbook flat against a...Ch. 5.8 - Prob. 5.7QQCh. 5 - The driver of a speeding empty truck slams on the...Ch. 5 - In Figure OQ5.2, a locomotive has broken through...Ch. 5 - Prob. 3OQ
Ch. 5 - Prob. 4OQCh. 5 - Prob. 5OQCh. 5 - The manager of a department store is pushing...Ch. 5 - Two objects are connected by a string that passes...Ch. 5 - Prob. 8OQCh. 5 - A truck loaded with sand accelerates along a...Ch. 5 - A large crate of mass m is place on the flatbed of...Ch. 5 - If an object is in equilibrium, which of the...Ch. 5 - A crate remains stationary after it has been...Ch. 5 - An object of mass m moves with acceleration a down...Ch. 5 - Prob. 1CQCh. 5 - Your hands are wet, and the restroom towel...Ch. 5 - In the motion picture It Happened One Night...Ch. 5 - If a car is traveling due westward with a constant...Ch. 5 - A passenger sitting in the rear of a bus claims...Ch. 5 - A child tosses a ball straight up. She says that...Ch. 5 - A person holds a ball in her hand. (a) Identify...Ch. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Twenty people participate in a tug-of-war. The two...Ch. 5 - Prob. 11CQCh. 5 - Prob. 12CQCh. 5 - A weightlifter stands on a bathroom scale. He...Ch. 5 - Prob. 14CQCh. 5 - Suppose you are driving a classic car. Why should...Ch. 5 - Prob. 16CQCh. 5 - Describe two examples in which the force of...Ch. 5 - The mayor of a city reprimands some city employees...Ch. 5 - Give reasons for the answers to each of the...Ch. 5 - Prob. 20CQCh. 5 - Identify actionreaction pairs in the following...Ch. 5 - Prob. 22CQCh. 5 - Prob. 23CQCh. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - If a man weighs 900 N on the Earth, what would he...Ch. 5 - A 3.00-kg object undergoes an acceleration given...Ch. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - The average speed of a nitrogen molecule in air is...Ch. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. An electron of mass 9. 11 1031 kg has an...Ch. 5 - Prob. 12PCh. 5 - One or more external forces, large enough to be...Ch. 5 - A brick of mass M has been placed on a rubber...Ch. 5 - Two forces, F1=(6.00i4.00j)N and...Ch. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - You stand on the seat of a chair and then hop off....Ch. 5 - Prob. 21PCh. 5 - Review. Three forces acting on an object are given...Ch. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Review. Figure P5.15 shows a worker poling a boata...Ch. 5 - An iron bolt of mass 65.0 g hangs from a string...Ch. 5 - Prob. 27PCh. 5 - The systems shown in Figure P5.28 are in...Ch. 5 - Prob. 29PCh. 5 - A block slides down a frictionless plane having an...Ch. 5 - The distance between two telephone poles is 50.0...Ch. 5 - A 3.00-kg object is moving in a plane, with its x...Ch. 5 - A bag of cement weighing 325 N hangs in...Ch. 5 - A bag of cement whose weight is Fg hangs in...Ch. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - An object of mass m = 1.00 kg is observed to have...Ch. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - An object of mass m1 = 5.00 kg placed on a...Ch. 5 - Prob. 41PCh. 5 - Two objects are connected by a light string that...Ch. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - In the system shown in Figure P5.23, a horizontal...Ch. 5 - An object of mass m1 hangs from a string that...Ch. 5 - A block is given an initial velocity of 5.00 m/s...Ch. 5 - A car is stuck in the mud. A tow truck pulls on...Ch. 5 - Prob. 49PCh. 5 - Prob. 50PCh. 5 - In Example 5.8, we investigated the apparent...Ch. 5 - Consider a large truck carrying a heavy load, such...Ch. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - A 25.0-kg block is initially at rest on a...Ch. 5 - Why is the following situation impassible? Your...Ch. 5 - Prob. 57PCh. 5 - Before 1960m people believed that the maximum...Ch. 5 - Prob. 59PCh. 5 - A woman at an airport is towing her 20.0-kg...Ch. 5 - Review. A 3.00-kg block starts from rest at the...Ch. 5 - The person in Figure P5.30 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Prob. 65PCh. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - Prob. 71PCh. 5 - A black aluminum glider floats on a film of air...Ch. 5 - Prob. 73APCh. 5 - Why is the following situation impossible? A book...Ch. 5 - Prob. 75APCh. 5 - A 1.00-kg glider on a horizontal air track is...Ch. 5 - Prob. 77APCh. 5 - Prob. 78APCh. 5 - Two blocks of masses m1 and m2, are placed on a...Ch. 5 - Prob. 80APCh. 5 - An inventive child named Nick wants to reach an...Ch. 5 - Prob. 82APCh. 5 - Prob. 83APCh. 5 - An aluminum block of mass m1 = 2.00 kg and a...Ch. 5 - Prob. 85APCh. 5 - Prob. 86APCh. 5 - Prob. 87APCh. 5 - Prob. 88APCh. 5 - A crate of weight Fg is pushed by a force P on a...Ch. 5 - Prob. 90APCh. 5 - A flat cushion of mass m is released from rest at...Ch. 5 - In Figure P5.46, the pulleys and pulleys the cord...Ch. 5 - What horizontal force must be applied to a large...Ch. 5 - Prob. 94APCh. 5 - A car accelerates down a hill (Fig. P5.95), going...Ch. 5 - Prob. 96CPCh. 5 - Prob. 97CPCh. 5 - Initially, the system of objects shown in Figure...Ch. 5 - A block of mass 2.20 kg is accelerated across a...Ch. 5 - Prob. 100CPCh. 5 - Prob. 101CPCh. 5 - In Figure P5.55, the incline has mass M and is...Ch. 5 - Prob. 103CPCh. 5 - Prob. 104CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A stone has a mass of 8.79 g and is wedged into the tread of an automobile tire, as the drawing shows. The coefficient of static friction between the stone and each side of the tread channel is 0.818. When the tire surface is rotating at 10.9m/s, the stone flies out the tread. The magnitude FN of the normal force that each side of the tread channel exerts on the stone is 2.46 N. Assume that only static friction supplies the centripetal force, and determines the radius r of the tire (in terms of m)arrow_forwardA 52 kg ice skater spins about a vertical axis through her body with her arms horizontally outstretched; she makes 2.0 turns each second. The distance from one hand to the other is 1.50 m. Biometric measurements indicate that each hand typically makes up about 1.25% of body weight. (a) Draw a free-body diagram of one of the skater’s hands. (b) What horizontal force must her wrist exert on her hand? (c) Express the force in part (b) as a multiple of the weight of her hand.arrow_forwardA student is attempting to push his stalled car out of an intersection with his girlfriend at the wheel. The car and girlfriend has a combined mass of m = 999 kg. Unfortunately the hill has an incline of θ = 3.6 degrees with respect to the horizontal. The student can supply a force of F = 883 N for t = 24 s before tiring. What is the furthest the edge of the intersection can be d in meters from the stalled car in order to make it out in one push. Assume no rolling resistance from the car and that his girlfriend brakes to bring the car to a stop when he stops pushing. I got these hints: -Start with free body diagram. Use the relationship between impulse and momentum to find the final velocity of the car after he has pushed for time t.-Use a kinematic equation to relate the final velocity and time to the distance traveled.-What is his initial velocity?arrow_forward
- The Special Olympics raises money through “plane pull” events in which teams of 25 people compete to see who can pull a 74,000 kg airplane 3.7 m across the tarmac. The inertia of the plane is an issue—but so is the 14,000 N rolling friction force that works against the teams. If a team pulls with a constant force and moves the plane 3.7 m in 6.1 s (an excellent time), what fraction of the team’s work goes to kinetic energy and what fraction goes to thermal energy?arrow_forwardA cinder block of mass m=4 kg is hung from a as nylon string that is wrapped around a frictionless pulley having a cylindrical shape (I=.5MR2). If the cinder block accelerates downward at 4.9 m/s2 when it is released, what is the mass M of the pulley?arrow_forwardTry again. A 4.6 kg body is at rest on a frictionless horizontal air track when a constant horizontal force F acting in the positive direction of an x axis along the track is applied to the body. A stroboscopic graph of the position of the body as it slides to the right is shown in the figure. The force F is applied to the body at t = 0, and the graph records the position of the body at 0.50 s intervals. How much work is done on the body by the applied force F between t = 0 and t = 1.8 s? 0.5s -1.0 s 1.5s 2.0 s 0.2 0.4 0.6 0.8 x (m) Number To.8 Units the tolerance is +/-2% Click if you would like to Show Work for this question: Open Show Work SHOW HINT LINK TO TEXT LINK TO SAMPLE PROBLEM VIDEO MINI-LECTURE to search 10:33 PM ENG 4/4/2021 ASUS 13) 16 17 1ghome 3 4 R U F G トarrow_forward
- Show the complete solutionarrow_forwardA 5.0 g coin is placed 15 cm from the center of a turntable. The coin has static and kinetic coefficients of friction with the turntable surface of μs = 0.70 and μk = 0.50. The turntable very slowly speeds up. What is the frequency of the rotation of the turntable expressed in revolutions per minute when the coin slides off? Express your answer in revolutions per minute.arrow_forwardBlack Panther (mass 80.0 kg) is trying to save Spiderman (mass 70.0 kg) and Supergirl (mass 60.0 kg) who have been rendered powerless by an evil villain. The three are attached by two ropes as shown and are sliding off the top of a building. The coefficient of friction between Black Panther's feet and the ground is 0.550. Determine: a) The force of kinetic friction between Black Panther's feet and the ground. b) The acceleration of the system. c) The forces of tension, FT1 and FT2, in the two ropes. Black Panther Frictionless pulley Spiderman a Supergirlarrow_forward
- In the very Dutch sport of Fierljeppen, athletes run up to a long pole and then use it to vault across a canal as shown in (Figure 1). At the very top of his arc, a 70 kg vaulter is moving at 2.9 m/s and is 5.5 m from the bottom end of the pole. What is the magnitude of the vertical force that the pole exerts on the vaulter? Express your answer with the appropriate units.arrow_forwardA rope is attached to an object with mass 8.5-kg that rests on a frictionless, horizontal surface. The horizontal rope passes over a pulley, and a block with mass 5 kg is suspended from the other end. When the blocks are released, the tension in the rope is 11.6 newtons. What is the acceleration of either block? The pulley is frictionless and massless.arrow_forwardA light plane of mass 1200 kg makes an emergency landing on a short runway. With its engine off, it lands on the runway at a speed of 35 m/s. A hook on the plane snags a cable attached to a 130 kg sandbag and drags the sandbag along. Now you can consider the system as a combined mass along with the sandbag and the plane. Now, the coefficient of friction between the sandbag and the runway is uk = 0.4, and also the plane's brakes give an additional retarding force of magnitude 1400 N. So our target for this problem is to find how far does the plane go before it comes to stop. Assume, when the plane snags the sandbag, the collision is instantaneous. [Hints Think carefully whether you can apply conservation of momentum or not] (a) Find the speed of the plane and sandbag immediately after the collision. (b) Find the time when the plane along with the sandbag will come to stop. [Hints: Think about whether the system (sandbag and the plane) will accelerate or decelerate.] (c) Find how far the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY