
(a)
Interpretation:
To determine the name of binary ionic compound BeO.
Concept Introduction:
The naming of the ionic compound takes place in the way that the name of metal cation will remain same to that of metal while for anion the name of negative charged species end with suffix ‘ate’ for the case of elements such as P, S etc and name of negative charged species end with suffix ‘ide’ for the case of elements such as halides.
(b)
Interpretation:
To determine the name of binary ionic compound MgI2.
Concept Introduction:
The naming of the ionic compound takes place in the way that the name of metal cation will remain same to that of metal while for anion the name of negative charged species end with suffix ‘ate’ for the case of elements such as P, S etc and name of negative charged species end with suffix ‘ide’ for the case of elements such as halides.
(c)
Interpretation:
To determine the name of binary ionic compound Na2 S.
Concept Introduction:
The naming of the ionic compound takes place in the way that the name of metal cation will remain same to that of metal while for anion the name of negative charged species end with suffix ‘ate’ for the case of elements such as P, S etc and name of negative charged species end with suffix ‘ide’ for the case of elements such as halides.
(d)
Interpretation:
To determine the name of binary ionic compound Al2 O3.
Concept Introduction:
The naming of the ionic compound takes place in the way that the name of metal cation will remain same to that of metal while for anion the name of negative charged species end with suffix ‘ate’ for the case of elements such as P, S etc and name of negative charged species end with suffix ‘ide’ for the case of elements such as halides.
(e)
Interpretation:
To determine the name of binary ionic compoundHCl.
Concept Introduction:
The naming of the ionic compound takes place in the way that the name of metal cation will remain same to that of metal while for anion the name of negative charged species end with suffix ‘ate’ for the case of elements such as P, S etc and name of negative charged species end with suffix ‘ide’ for the case of elements such as halides.
(f)
Interpretation:
To determine the name of binary ionic compoundLiF.
Concept Introduction:
The naming of the ionic compound takes place in the way that the name of metal cation will remain same to that of metal while for anion the name of negative charged species end with suffix ‘ate’ for the case of elements such as P, S etc and name of negative charged species end with suffix ‘ide’ for the case of elements such as halides.
(g)
Interpretation:
To determine the name of binary ionic compound Ag2 S.
Concept Introduction:
The naming of the ionic compound takes place in the way that the name of metal cation will remain same to that of metal while for anion the name of negative charged species end with suffix ‘ate’ for the case of elements such as P, S etc. and name of negative charged species end with suffix ‘ide’ for the case of elements such as halides.
(h)
Interpretation:
To determine the name of binary ionic compound CaH2.
Concept Introduction:
The naming of the ionic compound takes place in the way that the name of metal cation will remain same to that of metal while for anion the name of negative charged species end with suffix ‘ate’ for the case of elements such as P, S etc. and name of negative charged species end with suffix ‘ide’ for the case of elements such as halides.

Want to see the full answer?
Check out a sample textbook solution
Chapter 5 Solutions
Introductory Chemistry: A Foundation
- helparrow_forwardDone 11:14 ⚫ worksheets.beyondlabz.com 5 (a). Using the peak information you listed in the tables for both structures, assign each peak to that portion of the structure that produces the peak in the NMR spectrum. Draw this diagram on your own sheet of paper and attach the sketch of your drawing to this question. Question 6 5 (b). Using the peak information you listed in the tables for both structures, assign each peak to that portion of the structure that produces the peak in the NMR spectrum. Draw this diagram on your own sheet of paper and attach the sketch of your drawing to this question. Question 7 6. Are there any differences between the spectra you obtained in Beyond Labz and the predicted spectra? If so, what were the differences? <arrow_forward2. Predict the NMR spectra for each of these two compounds by listing, in the NMR tables below, the chemical shift, the splitting, and the number of hydrogens associated with each predicted peak. Sort the peaks from largest chemical shift to lowest. **Not all slots must be filled** Peak Chemical Shift (d) 5.7 1 Multiplicity multiplate .......... 5.04 double of doublet 2 4.98 double of doublet 3 4.05 doublet of quartet 4 5 LO 3.80 quartet 1.3 doublet 6 Peak Chemical Shift (d) Multiplicityarrow_forward
- Interpreting NMR spectra is a skill that often requires some amount of practice, which, in turn, necessitates access to a collection of NMR spectra. Beyond Labz Organic Synthesis and Organic Qualitative Analysis have spectral libraries containing over 700 1H NMR spectra. In this assignment, you will take advantage of this by first predicting the NMR spectra for two closely related compounds and then checking your predictions by looking up the actual spectra in the spectra library. After completing this assignment, you may wish to select other compounds for additional practice. 1. Write the IUPAC names for the following two structures: Question 2 Question 3 2. Predict the NMR spectra for each of these two compounds by listing, in the NMR tables below, the chemical shift, the splitting, and the number of hydrogens associated with each predicted peak. Sort the peaks from largest chemical shift to lowest. **Not all slots must be filled**arrow_forward11:14 ... worksheets.beyondlabz.com 3. To check your predictions, click this link for Interpreting NMR Spectra 1. You will see a list of all the - compounds in the spectra library in alphabetical order by IUPAC name. Hovering over a name in the list will show the structure on the chalkboard. The four buttons on the top of the Spectra tab in the tray are used to select the different spectroscopic techniques for the selected compound. Make sure the NMR button has been selected. 4. Scroll through the list of names to find the names for the two compounds you have been given and click on the name to display the NMR spectrum for each. In the NMR tables below, list the chemical shift, the splitting, and the number of hydrogens associated with each peak for each compound. Compare your answers to your predictions. **Not all slots must be filled** Peak Chemical Shift (d) Multiplicity 1 2 3 4 5arrow_forwardО δα HO- H -Br δα HO-- + + -Br [B] 8+ HO- -Br δα नarrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





