
(a)
Interpretation:
To write the name of the polyatomic ions CO3 2-.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species CO3 2 - is named as carbonate.
Explanation of Solution
The polyatomic species CO3 2 - is named as Carbonate ion. The name carbon comes from element C and suffix ate is used for negative charge. It is an anionic polyatomic ions.
(b)
Interpretation:
To write the name of the polyatomic ions MnO4 -.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species MnO4 - is named as permanganate ion.
Explanation of Solution
The polyatomic speciesMnO4 - is named aspermanganate ion. The name Magnan comes from element Mnand suffix ate is used for negative charge. It is an anionic polyatomic ions.
(c)
Interpretation:
To write the name of the polyatomic ions NO3 -.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species NO3 - is named as Nitrate ion.
Explanation of Solution
The polyatomic species NO3 - is named as Nitrate ion. The name Nitr comes from element N and suffix ate is used for negative charge. It is an anionic polyatomic ions.
(d)
Interpretation:
To write the name of the polyatomic ions HSO4 -.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species CO3 2 - is named as carbonate.
Explanation of Solution
The polyatomic species HSO4 - is named as hydrogen sulfate. The name Hydrogensulf comes from element HSO4 and suffix ate is used for negative charge. It is an anionic polyatomic ions.
(e)
Interpretation:
To write the name of the polyatomic ions C2 H3 O2 -.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species C2 H3 O2 - is named as Acetate ion.
Explanation of Solution
The polyatomic species C2 H3 O2 - is named as acetate ion. The name acetate comes from C2 H3 O2 -and suffix ate is used for negative charge. It is an anionic polyatomic ions.
(f)
Interpretation:
To write the name of the polyatomic ions CrO4 2-.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species CrO4 2 - is named as Chromate ion.
Explanation of Solution
The polyatomic species CrO4 2 - is named as chromate ion. The name chromcomes from element Cr and suffix ate is used for negative charge. It is an anionic polyatomic ions.
(g)
Interpretation:
To write the name of the polyatomic ions OH-.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species OH- is named as hydroxide ion.
Explanation of Solution
The polyatomic species OH- is named as Hydroxide ion. The name hydrox comes from element O and H and suffix ate is used for negative charge. It is an anionic polyatomic ions.
(h)
Interpretation:
To write the name of the polyatomic ions ClO2 -.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species ClO2 - is named as chlorine dioxide.
Explanation of Solution
The polyatomic species ClO2 - is named as chlorine dioxide. The name Cl comes from element Cl and Oxide from element O and also used di for 2 Oxygen, suffix ate is used for negative charge. It is an anionic polyatomic ions.
(i)
Interpretation:
To write the name of the polyatomic ions HCO3 -.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species HCO3 - is named as bicarbonate ion.
Explanation of Solution
The polyatomic species HCO3 - is named as bicarbonate ion. The name bicarbon comes from HCO3 - and suffix ate is used for negative charge. It is an anionic polyatomic ions.
(j)
Interpretation:
To write the name of the polyatomic ions HPO4 2-.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species HPO4 2 - is named as bicarbonate ion.
Explanation of Solution
The polyatomic species HPO4 2 - is named as Hydrogen phosphate ion. The name hydrogen phosphate comes from HPO4 2 - and suffix ate is used for negative charge. It is an anionic polyatomic ions.
Want to see more full solutions like this?
Chapter 5 Solutions
Introductory Chemistry: A Foundation
- 5.arrow_forward9arrow_forwardalekscgi/x/lsl.exe/1o_u-IgNslkr7j8P3jH-IQs_pBanHhvlTCeeBZbufu BYTI0Hz7m7D3ZS18w-nDB10538ZsAtmorZoFusYj2Xu9b78gZo- O States of Matter Sketching a described thermodynamic change on a phase diagram 0/5 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 3- 200 temperature (K) Explanation Chick Q Sowncharrow_forward
- 0+ aleksog/x/lsl.exe/1ou-lgNgkr7j8P3H-IQs pBaHhviTCeeBZbufuBYTOHz7m7D3ZStEPTBSB3u9bsp3Da pl19qomOXLhvWbH9wmXW5zm O States of Matter Sketching a described thermodynamic change on a phase diagram 0/5 Gab The temperature on a sample of pure X held at 0.75 atm and -229. °C is increased until the sample sublimes. The temperature is then held constant and the pressure is decreased by 0.50 atm. On the phase diagram below draw a path that shows this set of changes. F3 pressure (atm) 0- 0 200 Explanation temperature (K) Check F4 F5 ☀+ Q Search Chill Will an 9 ENG F6 F7 F8 F9 8 Delete F10 F11 F12 Insert PrtSc 114 d Ararrow_forwardx + LEKS: Using a phase diagram a X n/alekscgi/x/lsl.exe/10_u-IgNsikr7j8P3jH-IQs_pBan HhvlTCeeBZbufu BYTI0Hz7m7D3ZcHYUt80XL-5alyVpw ○ States of Matter Using a phase diagram to find a phase transition temperature or pressure Use the phase diagram of Substance X below to find the melting point of X when the pressure above the solid is 1.1 atm. pressure (atm) 16 08- solid liquid- 0 200 400 gas 600 temperature (K) Note: your answer must be within 25 °C of the exact answer to be graded correct. × 5arrow_forwardS: Using a phase diagram leksogi/x/sl.exe/1ou-IgNs kr 7j8P3jH-IQs_pBan HhvTCeeBZbufuBYTI0Hz7m7D3ZdHYU+80XL-5alyVp O States of Matter Using a phase diagram to find a phase transition temperature or pressure se the phase diagram of Substance X below to find the boiling point of X when the pressure on the liquid is 1.6 atm. pressure (atm) 32- 16- solid liquid 0. gas 100 200 temperature (K) 300 Note: your answer must be within 12.5 °C of the exact answer to be graded correct. 10 Explanation Check § Q Search J 2025 McGraw Hill LLC. All Rights Researrow_forward
- 151.2 254.8 85.9 199.6 241.4 87.6 242.5 186.4 155.8 257.1 242.9 253.3 256.0 216.6 108.7 239.0 149.7 236.4 152.1 222.7 148.7 278.2 268.7 234.4 262.7 283.2 143.6 QUESTION: Using this group of data on salt reduced tomato sauce concentration readings answer the following questions: 1. 95% Cl Confidence Interval (mmol/L) 2. [Na+] (mg/100 mL) 3. 95% Na+ Confidence Interval (mg/100 mL)arrow_forwardResults Search Results Best Free Coursehero Unloc xb Success Confirmation of Q x O Google Pas alekscgi/x/lsl.exe/1o_u-IgNslkr 7j8P3jH-IQs_pBanHhvlTCeeBZbufu BYTI0Hz7m7D3ZcHYUt80XL-5alyVpwDXM TEZayFYCavJ17dZtpxbFD0Qggd1J O States of Matter Using a phase diagram to find a phase transition temperature or pressure Gabr 3/5 he pressure above a pure sample of solid Substance X at 101. °C is lowered. At what pressure will the sample sublime? Use the phase diagram of X below to nd your answer. pressure (atm) 24- 12 solid liquid gas 200 400 temperature (K) 600 ote: your answer must be within 0.15 atm of the exact answer to be graded correct. atm Thanation Check © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center I Q Search L³ ملةarrow_forward301.7 348.9 193.7 308.6 339.5 160.6 337.7 464.7 223.5 370.5 326.6 327.5 336.1 317.9 203.8 329.8 221.9 331.7 211.7 309.6 223.4 353.7 334.6 305.6 340.0 304.3 244.7 QUESTION: Using this group of data on regular tomato sauce concentration readings answer the following questions: 1. 95% Cl Confidence Interval (mmol/L) 2. [Na+] (mg/100 mL) 3. 95% Na+ Confidence Interval (mg/100 mL)arrow_forward
- Search Results Search Results Best Free Coursehero Unlo x b Success Confirmation of Q aleks.com/alekscgi/x/sl.exe/10_u-lgNslkr7j8P3jH-IQs_pBan HhvlTCeeBZbufu BYTIOHz7m7D3ZcHYUt80XL-5alyVpwDXM TEZayFYCav States of Matter Using a phase diagram to find a phase transition temperature or pressure Use the phase diagram of Substance X below to find the temperature at which X turns to a gas, if the pressure above the solid is 3.7 atm. pressure (atm) 0. 32- 16 solid liquid gas 200 temperature (K) Note: your answer must be within 20 °C of the exact answer to be graded correct. Дос Xarrow_forwardConsider the reaction below to answer the following questions: Acetoacetic ester can be prepared by the Claisen self-condensation reaction of ethyl acetate. 1. NaOEt, EtOH H&C OCH CH3 2 H30 H3C CH2 OCH2CH3 A. Write the complete stepwise mechanism for this reaction. Show all electron flow with arrows and draw all intermediate structures. B. Ethyl acetate can be prepared from ethanol as the only organic starting material. Show all reagents and structures for all intermediates in this preparation. C. Give the structures of the ester precursors for the following Claisen condensation product and formulate the reaction. OEtarrow_forwardUse the phase diagram of Substance X below to find the temperature at which X turns to a gas, if the pressure above the solid is 3.7 atm. pressure (atm) 32 16 solid liquid gas 0 0 200 temperature (K) Note: your answer must be within 20 °C of the exact answer to be graded correct. Шос ☑ كarrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning





