![Study Guide with Selected Solutions for Stoker's General, Organic, and Biological Chemistry, 7th](https://www.bartleby.com/isbn_cover_images/9781305081086/9781305081086_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
The bond formed between nitrogen and hydrogen has to be classified as nonpolar covalent, polar covalent or ionic.
Concept Introduction:
Close relationship between ionic and covalent bonding models becomes apparent if the bond polarity and electronegativity is considered. Electronegativity is the measure of relative attractive for the shared pair of electrons in a bond. Higher the electronegative value for an atom, the more it attracts the shared pair of electrons towards itself.
In Periodic table, when moving from left to right in a period, the electronegativity value increases. While moving from top to bottom within group, the electronegativity value decreases. Nonmetals have higher electronegativity values than metals. Metals gives electrons and nonmetals accepts electrons.
Bond polarity is the degree of inequality in the electron pair sharing between two atoms in a
The ionic and covalent bonds can be identified by using the electronegativity difference between the atoms that are bonded together.
- Bonds that are formed between two similar electronegative atoms are known as nonpolar covalent bonds. The electronegativity difference has to be 0.4 or less.
- The bonds that have electronegativity difference greater than 0.4 and lesser than 1.5 are known as polar covalent bonds.
- If the electronegativity difference is more than 2.0, then the bond is considered to be ionic.
- If the electronegativity difference is between 1.5 to 2.0, then the bond can be ionic or covalent depending upon the type of atoms that is bonded. If the bond is between a metal and nonmetal, then it is ionic and if it is between two nonmetals then it is polar covalent.
(b)
Interpretation:
The bond formed between nitrogen and carbon has to be classified as nonpolar covalent, polar covalent or ionic.
Concept Introduction:
Close relationship between ionic and covalent bonding models becomes apparent if the bond polarity and electronegativity is considered. Electronegativity is the measure of relative attractive for the shared pair of electrons in a bond. Higher the electronegative value for an atom, the more it attracts the shared pair of electrons towards itself.
In Periodic table, when moving from left to right in a period, the electronegativity value increases. While moving from top to bottom within group, the electronegativity value decreases. Nonmetals have higher electronegativity values than metals. Metals gives electrons and nonmetals accepts electrons.
Bond polarity is the degree of inequality in the electron pair sharing between two atoms in a chemical bond. If the electrons are equally shared between two atoms then it is known as nonpolar covalent bond. If the electrons are unequally shared between two atoms means then it is known as polar covalent bond. The more electronegative atom pulls the shared pair of electrons towards itself resulting in fractional negative charge over it while the other atom gets a fractional positive charge. The fractional negative charge is depicted by using the symbol
The ionic and covalent bonds can be identified by using the electronegativity difference between the atoms that are bonded together.
- Bonds that are formed between two similar electronegative atoms are known as nonpolar covalent bonds. The electronegativity difference has to be 0.4 or less.
- The bonds that have electronegativity difference greater than 0.4 and lesser than 1.5 are known as polar covalent bonds.
- If the electronegativity difference is more than 2.0, then the bond is considered to be ionic.
- If the electronegativity difference is between 1.5 to 2.0, then the bond can be ionic or covalent depending upon the type of atoms that is bonded. If the bond is between a metal and nonmetal, then it is ionic and if it is between two nonmetals then it is polar covalent.
(c)
Interpretation:
The bond formed between nitrogen and sulfur has to be classified as nonpolar covalent, polar covalent or ionic.
Concept Introduction:
Close relationship between ionic and covalent bonding models becomes apparent if the bond polarity and electronegativity is considered. Electronegativity is the measure of relative attractive for the shared pair of electrons in a bond. Higher the electronegative value for an atom, the more it attracts the shared pair of electrons towards itself.
In Periodic table, when moving from left to right in a period, the electronegativity value increases. While moving from top to bottom within group, the electronegativity value decreases. Nonmetals have higher electronegativity values than metals. Metals gives electrons and nonmetals accepts electrons.
Bond polarity is the degree of inequality in the electron pair sharing between two atoms in a chemical bond. If the electrons are equally shared between two atoms then it is known as nonpolar covalent bond. If the electrons are unequally shared between two atoms means then it is known as polar covalent bond. The more electronegative atom pulls the shared pair of electrons towards itself resulting in fractional negative charge over it while the other atom gets a fractional positive charge. The fractional negative charge is depicted by using the symbol
The ionic and covalent bonds can be identified by using the electronegativity difference between the atoms that are bonded together.
- Bonds that are formed between two similar electronegative atoms are known as nonpolar covalent bonds. The electronegativity difference has to be 0.4 or less.
- The bonds that have electronegativity difference greater than 0.4 and lesser than 1.5 are known as polar covalent bonds.
- If the electronegativity difference is more than 2.0, then the bond is considered to be ionic.
- If the electronegativity difference is between 1.5 to 2.0, then the bond can be ionic or covalent depending upon the type of atoms that is bonded. If the bond is between a metal and nonmetal, then it is ionic and if it is between two nonmetals then it is polar covalent.
(d)
Interpretation:
The bond formed between nitrogen and chlorine has to be classified as nonpolar covalent, polar covalent or ionic.
Concept Introduction:
Close relationship between ionic and covalent bonding models becomes apparent if the bond polarity and electronegativity is considered. Electronegativity is the measure of relative attractive for the shared pair of electrons in a bond. Higher the electronegative value for an atom, the more it attracts the shared pair of electrons towards itself.
In Periodic table, when moving from left to right in a period, the electronegativity value increases. While moving from top to bottom within group, the electronegativity value decreases. Nonmetals have higher electronegativity values than metals. Metals gives electrons and nonmetals accepts electrons.
Bond polarity is the degree of inequality in the electron pair sharing between two atoms in a chemical bond. If the electrons are equally shared between two atoms then it is known as nonpolar covalent bond. If the electrons are unequally shared between two atoms means then it is known as polar covalent bond. The more electronegative atom pulls the shared pair of electrons towards itself resulting in fractional negative charge over it while the other atom gets a fractional positive charge. The fractional negative charge is depicted by using the symbol
The ionic and covalent bonds can be identified by using the electronegativity difference between the atoms that are bonded together.
- Bonds that are formed between two similar electronegative atoms are known as nonpolar covalent bonds. The electronegativity difference has to be 0.4 or less.
- The bonds that have electronegativity difference greater than 0.4 and lesser than 1.5 are known as polar covalent bonds.
- If the electronegativity difference is more than 2.0, then the bond is considered to be ionic.
- If the electronegativity difference is between 1.5 to 2.0, then the bond can be ionic or covalent depending upon the type of atoms that is bonded. If the bond is between a metal and nonmetal, then it is ionic and if it is between two nonmetals then it is polar covalent.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 5 Solutions
Study Guide with Selected Solutions for Stoker's General, Organic, and Biological Chemistry, 7th
- In piezoelectricity and piezoelectric ceramics, one of the following options is false:(A). Piezoelectricity allows an electrical signal to be transformed into a mechanical one.(B). PbZrO3 is a well-known piezoelectric ceramic.(C). Piezoelectricity and ferroelectricity in general have no relationship.(D). One of the applications of piezoelectricity is sonar.arrow_forward(30 MARKS) Give the major product(s ) formed including relevant stereochemistry or the complete reaction conditions for the following reactions. More than one step may be required for each reaction arrow, in which case the steps must be numbered 1), 2) etc. (2 marks each box) h) i) h) OH i) HO H3PO4, heat 2 Brarrow_forwardNonearrow_forward
- Indicate which option is false(A). Resistivity has a residual component and a thermal component.(B). In some materials resistivity increases with T and in others it decreases.(C). In insulating materials, resistivity is very low.arrow_forwardIn ceramic materials, in relation to polymorphism, the same substance crystallizes differently when external conditions vary. Is this correct?arrow_forwardIndicate the type of bond that is considered to be a hydrogen bond.(A). Permanent dipole-dipole interaction between polar molecules.(B). Mixed ionic-covalent bond.(C). Principal interatomic bond(D). Van del Waals forces.arrow_forward
- Retro aldol: NaOH H₂O H NaOH & d H₂O Harrow_forwardDraw the product of the reaction shown below. Ignore inorganic byproducts. H conc. HBr Drawing Qarrow_forwardCalculate the atomic packing factor of diamond knowing that the number of Si atoms per cm3 is 2.66·1022 and that the atomic radii of silicon and oxygen are, respectively, 0.038 and 0.117 nm.arrow_forward
- A pdf file of your hand drawn, stepwise mechanisms for the reactions. For each reaction in the assignment, you must write each mechanism three times (there are 10 reactions, so 30 mechanisms). (A) do the work on a tablet and save as a pdf., it is expected to write each mechanism out and NOT copy and paste the mechanism after writing it just once. Everything should be drawn out stepwise and every bond that is formed and broken in the process of the reaction, and is expected to see all relevant lone pair electrons and curved arrows. Aldol: NaOH HO H Δ NaOH Δarrow_forwardNonearrow_forwardDraw structures corresponding to the following names and give IUPAC names for the following compounds: (8 Point) a) b) c) CH3 CH2CH3 CH3CHCH2CH2CH CH3 C=C H3C H H2C=C=CHCH3 d) CI e) (3E,5Z)-2,6-Dimethyl-1,3,5,7-octatetraene f) (Z)-4-bromo-3-methyl-3-penten-1-yne g) cis-1-Bromo-2-ethylcyclopentane h) (5R)-4,4,5-trichloro-3,3-dimethyldecanearrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133109655/9781133109655_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305960060/9781305960060_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781559539418/9781559539418_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781464142314/9781464142314_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079250/9781305079250_smallCoverImage.gif)