
To show: The displacement of a straight line after time t is

Explanation of Solution
Given:
Acceleration is a, initial velocity is
Formula used:
The expression for acceleration function
Here,
The expression for velocity function
Here,
Antiderivative of
Calculation:
Initial velocity is
Given
Substitute
Integrate the equation
Where C is an arbitrary constant.
Substitute 0 for t in equations (3),
Substitute
Substitute
Substitute
Obtain the antiderivate of
Where D is an arbitrary constant.
Substitute 0 for t in equation (4),
Substitute
Substitute
Thus, the displacement of a straight line after time t is
Chapter 4 Solutions
Single Variable Calculus: Concepts and Contexts, Enhanced Edition
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





