(a)
To find: Thevertical and horizontal asymptote of the function.
(a)
Answer to Problem 11RE
There is no Horizontal and vertical asymptote in the function.
Explanation of Solution
Given:
Concept used:
If the degree of the numerator is more than the denominator, there is no horizontal asymptote.
If the denominator has no zeroes then there has no vertical asymptotes
Or
To get Vertical asymptote function should be rational and denominator must contain some variable otherwise there has no vertical asymptote.
Calculation:
Accordingto the laws of asymptotes:
If the degree of the numerator is more than the denominator, there is no horizontal asymptote.
If the denominator has no zeroes then there has no vertical asymptotes/.
Since her the function has denominator equal to one.
Hence, there is no Horizontal and vertical asymptote in the function.
(b)
To find: TheInterval of increasing or decreasing of the function.
(b)
Answer to Problem 11RE
The Interval of increasing or decreasing of the function is
Decreasing at interval of
Increasing at interval of
Explanation of Solution
Given:
Concept used:
Increasing or decreasing function can be calculated by equating first derivative of the function to 0.
Zeroes of x can be calculatedafter that the increasing and decreasing can be measured.
Calculation:
Increasing or decreasing function can be calculated by equating first derivative of the function to 0.
Hence the Interval of increasing or decreasing of the function is
Decreasing at interval of
Increasing at interval of
(c)
To find: The
(c)
Answer to Problem 11RE
Explanation of Solution
Given:
Concept used:
The local maxima and minima can be calculated by firstly equating the double differentiation to 0.
1.
2.If
3.
Calculation:
At
At
{except
Hence,
Local minima.
the point of inflection at
(d)
To find: The interval of concavity and the inflection point.
(d)
Answer to Problem 11RE
Concave downward in the interval of
Concave upward in the interval of
The point of inflection is
Explanation of Solution
Given:
Concept used:
The second derivative of function is calculated first.
Set the second derivative equal to zero and solve.
Check whether the second derivative undefined for any values of x.
Plot the number on number line and test the regions with the second derivative.
Plug these 3 values for obtain three inflection points.
The graph of
The graph of
If the graph of
Calculation:
This two are the point of inflection.
By putting the values in the equation.
The interval will be
Hence,
Concave downward in the interval of
Concave upward in the interval of
The point of inflection is
(e)
To Sketch:the graph of the function using graphing device.
(e)
Answer to Problem 11RE
Through the graph it’s easily verified the point of local maxima and minima, function is increasing or decreasing, concavity down or up and point of inflection.
Explanation of Solution
Given:
Concept used:
Desmos graphing calculator is used her to plot the graph and it can easily verify the maxima, minima and point of inflection etc.
Calculation:
The graph of
Hence, through the graph it’s easily verified the point of local maxima and minima, function is increasing or decreasing, concavity down or up and point of inflection.
Chapter 4 Solutions
Single Variable Calculus: Concepts and Contexts, Enhanced Edition
- Required information A telephone cable is clamped at A to the pole AB. The tension in the left-hand portion of the cable is given to be T₁ = 815 lb. T₁ 15° A 25° T₂ I B Using trigonometry, determine the corresponding magnitude of R. The corresponding magnitude of R is lb.arrow_forwardTwo forces are applied as shown to a hook support. The magnitude of P is 38 N. 50 N 25° DC a Determine the corresponding magnitude of R. The magnitude of R is N.arrow_forwardLet y(t) represent your retirement account balance, in dollars, after t years. Each year the account earns 7% interest, and you deposit 8% of your annual income. Your current annual income is $34000, but it is growing at a continuous rate of 2% per year. Write the differential equation modeling this situation. dy dtarrow_forward
- Determine Whether series converge or diverge if it converge what is the limit. $\{ \frac {(-1)^{n-2}n^{2}}{4+n^{3}}\} _{n=0}^{\infty }$arrow_forwardLet y(t) represent your retirement account balance, in dollars, after t years. Each year the account earns 7% interest, and you deposit 8% of your annual income. Your current annual income is $34000, but it is growing at a continuous rate of 2% per year. Write the differential equation modeling this situation. dy dtarrow_forward8:37 ▬▬▬▬▬▬▬▬▬ Ο Graph of f The figure shows the graph of a periodic function f in the xy-plane. What is the frequency of f? 0.5 B 2 C 3 D 8 3 of 6 ^ Oli Back Next apclassroom.collegeboard.orgarrow_forward
- 2. The growth of bacteria in food products makes it necessary to time-date some products (such as milk) so that they will be sold and consumed before the bacteria count is too high. Suppose for a certain product that the number of bacteria present is given by f(t)=5000.1 Under certain storage conditions, where t is time in days after packing of the product and the value of f(t) is in millions. The solution to word problems should always be given in a complete sentence, with appropriate units, in the context of the problem. (a) If the product cannot be safely eaten after the bacteria count reaches 3000 million, how long will this take? (b) If t=0 corresponds to January 1, what date should be placed on the product?arrow_forward2.6 Applications: Growth and Decay; Mathematics of Finances 1. A couple wants to have $50,000 in 5 years for a down payment on a new house. (a) How much should they deposit today, at 6.2% compounded quarterly, to have the required amount in 5 years? (b) How much interest will be earned? (c) If they can deposit only $30,000 now, how much more will they need to complete the $50,000 after 5 years? Note, this is not 50,000-P3.arrow_forwardThe graph of f(x) is given below. Select each true statement about the continuity of f(x) at x = 1. Select all that apply: ☐ f(x) is not continuous at x = 1 because it is not defined at x = 1. ☐ f(x) is not continuous at x = 1 because lim f(x) does not exist. x+1 ☐ f(x) is not continuous at x = 1 because lim f(x) ‡ f(1). x+→1 ☐ f(x) is continuous at x = 1.arrow_forward
- a is done please show barrow_forwardA homeware company has been approached to manufacture a cake tin in the shape of a "ghost" from the Pac-Man video game to celebrate the 45th Anniversary of the games launch. The base of the cake tin has a characteristic dimension / and is illustrated in Figure 1 below, you should assume the top and bottom of the shape can be represented by semi-circles. The vertical sides of the cake tin have a height of h. As the company's resident mathematician, you need to find the values of r and h that minimise the internal surface area of the cake tin given that the volume of the tin is Vfixed- 2r Figure 1 - Plan view of the "ghost" cake tin base. (a) Show that the Volume (V) of the cake tin as a function of r and his 2(+1)²h V = 2arrow_forward15. Please solve this and show each and every step please. PLEASE no chatgpt can I have a real person solve it please!! I am stuck. I am doing pratice problems and I do not even know where to start with this. The question is Please compute the indicated functional value.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning